#importing modules
import math
from __future__ import division
#Variable declaration
W=(3.14/3) #Angular frequency in radian
#Calculations
t=((3.14)/(3*W))
#Result
print"The time taken to move from one end of its path to 0.025m from mean position is %i"%t,"sec"
#importing modules
import math
from __future__ import division
#Variable declaration
T=31.4 #Time Period
A=0.06 #Amplitude
#Calculations
W=((2*3.14)/T)
Vmax=W*A
#Result
print"The Maximum Velocity is",Vmax,"m/sec"
#importing modules
import math
from __future__ import division
#Variable declaration
m=8 #mass
g=9.8 #acceleration due to gravity
x=0.32 #Stretched spring deviation
m2=0.5 #mass of the other body
#Calculations
k=((m*g)/x)
T=((2*3.14)*math.sqrt(m2/k))
#Result
print"The Time Period of Oscillation for the other body is %0.2f"%T,"sec"
#importing modules
import math
from __future__ import division
#Variable declaration
Q=10**4 #Quality Factor
f=250 #Frequency
#Calculations
Tau=((Q)/(2*3.14*f))
t=((math.log(10,10)*20)/(0.4342944819*3.14))
#Result
print"The Time Interval is %2.2f"%t,"sec"
#importing modules
import math
from __future__ import division
#Variable declaration
Q=2000 #Quality Factor
f=240 #Frequency
#Calculations
Tau=((Q)/(2*3.14*f))
t=4*Tau
#Result
print"The Time in which the amplitude decreases is %1.1f"%t,"sec"
#importing modules
import math
from __future__ import division
#Variable declaration
A=50/1.4 #Amplitude which is A=(50f/1.4*W**2)
Amax=50 #Max Amplitude which is Amax=(50f/W**2)
#Calculations
Rat=A/Amax
#Result
print"The Value of A/Amax is %0.2f"%Rat