#importing modules
import math
from __future__ import division
#Variable declaration
L=3; #length of wire(m)
A=6.25*10**-5; #cross sectional area(m**2)
delta_L=3*10**-3; #increase in length(m)
F=1.2*10**3; #force(N)
#Calculation
Y=F*L/(A*delta_L); #young's modulus(N/m**2)
#Result
print "young's modulus is ",Y/10**10,"*10**10 N/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
Y=2*10**11; #young's modulus(N/m**2)
L=2.75; #length of wire(m)
d=1*10**-3; #diameter(m)
M=1; #applied load(kg)
g=9.8; #acceleration due to gravity(N)
#Calculation
T=M*g; #tension(N)
delta_L=T*L/(math.pi*(d/2)**2*Y); #increase in length of wire(m)
#Result
print "increase in length of wire is",round(delta_L*10**4,5),"*10**-4 m"
#importing modules
import math
from __future__ import division
#Variable declaration
F=0.3; #force(N)
d=5*10**-3; #displacement(m)
L=6*10**-2; #length of solid(m)
B=6*10**-2; #breadth of solid(m)
h=2*10**-2; #height of solid(m)
#Calculation
s=F/(L*B); #shear stress(N/m**2)
theta=d/h; #shear strain
rm=s/theta; #rigidity modulus(N/m**2)
#Result
print "shear stress is",round(s,2),"N/m**2"
print "shear strain is",theta
print "rigidity modulus is",round(rm,2),"N/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
n=2.5*10**10; #rigidity modulus(N/m**2)
L=30*10**-2; #thickness(m)
A=12*10**-4; #surface area(m**2)
delta_L=1.5*10**-2; #displacement(m)
#Calculation
F=n*A*delta_L/L; #shearing force(N)
#Result
print "shearing force is",F/10**6,"*10**6 N"
#importing modules
import math
from __future__ import division
#Variable declaration
Y=7.25*10**10; #young's modulus of silver(N/m**2)
K=11*10**10; #bulk modulus of silver(N/m**2)
#Calculation
sigma=(3*K-Y)/(6*K); #poisson's ratio
#Result
print "poisson's ratio is",round(sigma,2)
#importing modules
import math
from __future__ import division
#Variable declaration
L=3; #length of Cu wire(m)
Y=12.5*10**10; #young's modulus(N/m**2)
r=5*10**-4; #radius of wire(m)
sigma=0.26; #poisson's ratio
m=10; #load(kg)
g=9.8; #acceleration due to gravity(N)
#Calculation
delta_L=m*g*L/(math.pi*r**2*Y); #extension produced(m)
ls=sigma*delta_L/3; #lateral strain
dd=ls*r*2; #decrease in diameter(m)
#Result
print "extension produced is",round(delta_L*10**3,2),"*10**-3 m"
print "lateral compression produced is",round(dd*10**7,3),"*10**-7 m"
#importing modules
import math
from __future__ import division
#Variable declaration
L=1; #length of wire(m)
d=1*10**-3; #diameter of wire(m)
n=2.8*10**10; #rigidity modulus of wire(N/m**2)
theta=math.pi/2; #angle of twisting(radian)
#Calculation
C=math.pi**2*n*(d/2)**4/(4*L); #couple to be applied(Nm)
#Result
print "couple to be applied is",round(C*10**3,5),"*10**-3 Nm"
#importing modules
import math
from __future__ import division
#Variable declaration
d=0.82*10**-3; #diameter of wire(m)
delta_L=1*10**-3; #length of elongation produced(m)
m=0.33; #load(kg)
g=9.8; #acceleration due to gravity(N)
n=2.2529*10**9; #rigidity modulus of wire(N/m**2)
#Calculation
Y=m*g/(math.pi*(d/2)**2*delta_L); #young's modulus(N/m**2)
sigma=(Y/(2*n))-1; #poisson's ratio
#Result
print "poisson's ratio is",round(sigma,3)
#importing modules
import math
from __future__ import division
#Variable declaration
p1=1.01*10**5; #atmospheric pressure(N/m**2)
K=16*10**10; #bulk modulus(N/m**2)
p2=10**2; #increased pressure(N/m**2)
#Calculation
dP=p1-p2; #change in pressure(N/m**2)
dV=dP/K; #fractional change of volume
#Result
print "change in volume of steel bar is",round(dV*10**7,1),"*10**-7 V m**3"
#importing modules
import math
from __future__ import division
#Variable declaration
Y=1.013*10**10; #young's modulus of bar(N/m**2)
b=2*10**-2; #breadth of bar(m)
l=1; #length of bar(m)
d=1*10**-2; #depth of bar(m)
m=2; #load(kg)
g=9.8; #acceleration due to gravity(N)
#Calculation
y=m*g*l**3/(4*Y*b*d**3); #depression produced in bar(m)
#Result
print "depression produced in bar is",round(y,6),"m"
#importing modules
import math
from __future__ import division
#Variable declaration
r=1.2*10**-2; #radius of cantilever(m)
l=1.5; #length of cantilever(m)
Y=19.5*10**10; #young's modulus(N/m**2)
m=2; #load(kg)
g=9.8; #acceleration due to gravity(N)
#Calculation
y=4*m*g*l**3/(3*Y*math.pi*(r**4)); #depression produced in cantilever(m)
#Result
print "depression produced in cantilever is",round(y*10**3,3),"*10**-3 m"