#importing modules
import math
from __future__ import division
#Variable declaration
V=150; #potential difference(V)
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #planck's constant
#Calculation
lamda=h/math.sqrt(2*m*e*V); #de broglie wavelength of electron(m)
#Result
print "de broglie wavelength of electron is",round(lamda*10**10,5),"*10**-10 m"
#importing modules
import math
from __future__ import division
#Variable declaration
E=0.025; #energy of electron(MeV)
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #planck's constant
#Calculation
E=E*10**6*e; #energy of electron(J)
v=math.sqrt(2*E/m); #velocity of electron(m/s)
lamda=h/(m*v); #de broglie wavelength(m)
#Result
print "de broglie wavelength is",round(lamda*10**10,5),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
E=1; #kinetic energy of electron(MeV)
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #planck's constant
#Calculation
E=E*10**6*e; #energy of electron(J)
v=math.sqrt(2*E/m); #velocity of electron(m/s)
lamda=h/(m*v); #de broglie wavelength of electron(m)
#Result
print "de broglie wavelength of electron is",round(lamda*10**10,5),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
V=100; #potential difference(V)
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #planck's constant
c=3*10**8; #velocity of light(m/s)
#Calculation
v=math.sqrt(2*e*V/m); #velocity of electron(m/s)
u=c**2/v; #phase velocity of electron(m/s)
lamda=h/(m*v); #de broglie wavelength of electron(m)
p=m*v; #momentum of electron(kg m/s)
vbar=1/lamda; #wave number of electron wave(per m)
#Result
print "velocity of electron is",round(v/10**6,5),"*10**6 m/s"
print "phase velocity of electron is",round(u/10**10,4),"*10**10 m/s"
print "de broglie wavelength of electron is",round(lamda*10**10,3),"angstrom"
print "momentum of electron is",round(p*10**24,3),"*10**-24 kg m/s"
print "wave number of electron wave is",round(vbar/10**9,3),"*10**9 per m"
#importing modules
import math
from __future__ import division
#Variable declaration
deltax=10**-14; #radius of nucleus(m)
m=1.67*10**-27; #mass of proton(kg)
h=6.626*10**-34; #planck's constant
e=1.6*10**-19; #charge of electron(c)
#Calculation
deltap=h/(2*math.pi*deltax); #uncertainity in momentum of proton(kg m/s)
KE=deltap**2/(2*m); #minimum kinetic energy of proton(J)
KE=KE/(e*10**6); #minimum kinetic energy of proton(MeV)
#Result
print "uncertainity in momentum of proton is",round(deltap*10**20,4),"*10**-20 kg m/s"
print "minimum kinetic energy of proton is",round(KE,3),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
deltax=0.1*10**-10; #uncertainity in position of electron(m)
h=6.626*10**-34; #planck's constant
#Calculation
deltap=h/(2*math.pi*deltax); #uncertainity in momentum of electron(kg m/s)
#Result
print "uncertainity in momentum of electron is",round(deltap*10**23,4),"*10**-23 kg m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #planck's constant
a=1*10**-10; #width of potential wall(m)
n1=1;
n2=2;
n3=3;
e=6.24*10**18; #conversion factor from J to eV
#Calculation
En=(h**2)/(8*m*(a**2)); #energy of electron(J)
E1=En*n1**2; #energy of 1st excited state(J)
E1=E1*e; #energy of 1st excited state(eV)
E2=En*n2**2; #energy of 2nd excited state(J)
E2=E2*e; #energy of 2nd excited state(eV)
E3=En*n3**2; #energy of 3rd excited state(J)
E3=E3*e; #energy of 3rd excited state(eV)
#Result
print "first 3 permitted energy levels of electron are",round(E1,2),"eV",round(E2,2),"eV and",round(E3,2),"eV"
print "answers given in the book vary due to rounding off errors"