#importing modules
import math
from __future__ import division
#Variable declaration
sigma=5.87*10**7; #electrical conductivity of Cu(per ohm m)
K=390; #thermal conductivity(W/mK)
T=20+273; #temperature(K)
#Calculation
L=K/(sigma*T); #Lorentz number(W ohm/K**2)
#Result
print "Lorentz number is",round(L*10**8,4),"*10**-8 W ohm/K**2"
#importing modules
import math
from __future__ import division
#Variable declaration
tow_r=10**-14; #relaxation time(s)
T=300; #temperature(K)
kB=1.38*10**-23; #boltzmann constant
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
n=6*10**28; #electron concentration(per m**3)
#Calculation
sigma=n*e**2*tow_r/m; #electrical conductivity(per ohm m)
K=n*math.pi**2*kB**2*T*tow_r/(3*m); #thermal conductivity(W/mK)
L=K/(sigma*T); #Lorentz number(W ohm/K**2)
#Result
print "electrical conductivity is",round(sigma/10**7,4),"*10**7 per ohm m"
print "thermal conductivity is",round(K,4),"W/mK"
print "Lorentz number is",round(L*10**8,4),"*10**-8 W ohm/K**2"
#importing modules
import math
from __future__ import division
#Variable declaration
tow_r=10**-14; #relaxation time(s)
rho=8900; #density of Cu(kg/m**3)
aw=63.5; #atomic weight of Cu
N=6.022*10**23; #avagadro constant
f=1*10**3; #number of free electrons per atom
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
#Calculation
n=N*rho*f/aw; #electron concentration(per m**3)
sigma=n*e**2*tow_r/m; #electrical conductivity(per ohm m)
#Result
print "electrical conductivity is",round(sigma/10**7,3),"*10**7 per ohm m"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.54*10**-8; #resistivity(ohm m)
EF=5.5; #fermi energy(eV)
e=1.6*10**-19; #charge of electron(c)
m=9.1*10**-31; #mass of electron(kg)
E=100;
n=5.8*10**28; #electron concentration(per m**3)
#Calculation
tow_r=m/(rho*n*e**2); #relaxation time(s)
mew=e*tow_r/m; #mobility of electrons(m**2/Vs)
v=e*tow_r*E/m; #drift velocity(m/s)
EF=EF*e; #fermi energy(J)
vF=math.sqrt(2*EF/m); #fermi velocity(m/s)
lamda=vF*tow_r; #mean free path(m)
#Result
print "relaxation time is",round(tow_r*10**14,2),"*10**-14 s"
print "mobility of electrons is",round(mew*10**3,3),"*10**-3 m**2/Vs"
print "drift velocity is",round(v,4),"m/s"
print "fermi velocity is",round(vF/10**6,2),"*10**6 m/s"
print "mean free path is",round(lamda*10**8,2),"*10**-8 m"