#importing modules
import math
from __future__ import division
#Variable declaration
a=0.629*10**-9; #lattice parameter(m)
alphaeK=1.26*10**-40; #electronic polarizability for K+(F/m**2)
alphaeCl=3.408*10**-40; #electronic polarizability for Cl-(F/m**2)
n=4; #number of atoms
epsilon0=8.854*10**-12;
#Calculation
alphae=alphaeK+alphaeCl; #electronic polarizability for KCl(F/m**2)
N=n/(a**3); #number of dipoles(atoms/m**3)
epsilonr=(N*alphae/epsilon0)+1; #dielectric constant of KCl
#Result
print "dielectric constant of KCl is",round(epsilonr,4)
#importing modules
import math
from __future__ import division
#Variable declaration
R=0.12*10**-9; #atomic radius of Se(m)
epsilon0=8.854*10**-12;
#Calculation
alphae=4*math.pi*epsilon0*(R**3); #electronic polarizability of isolated Se(F/m**2)
#Result
print "electronic polarizability of isolated Se is",round(alphae*10**40,4),"*10**-40 F/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
alphae=0.35*10**-40; #electronic polarizability(F/m**2)
N=2.7*10**25; #number of atoms(atoms/m**3)
epsilon0=8.854*10**-12;
#Calculation
a=N*alphae/(3*epsilon0);
epsilonr=(1+(2*a))/(1-a); #dielectric constant of Ne
#Result
print "dielectric constant of Ne is",round(epsilonr,9)
#importing modules
import math
from __future__ import division
#Variable declaration
R=0.384*10**-9; #radius of Ar(m)
N=2.7*10**25; #number of atoms(atoms/m**3)
epsilon0=8.854*10**-12;
#Calculation
alphae=4*math.pi*epsilon0*(R**3); #electronic polarizability of Ar(F/m**2)
a=N*alphae/(3*epsilon0);
epsilonr=(1+(2*a))/(1-a); #dielectric constant of Ar
#Result
print "dielectric constant of Ar is",epsilonr
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
C=2*10**-6; #capacitance(F)
epsilonr=80; #permitivity of dielectric
V=1*10**3; #applied voltage(V)
#Calculation
E1=(1/2)*C*V**2; #energy stored in capacitor(J)
C0=C/epsilonr; #capacitance when dielectric is removed(F)
E2=(1/2)*C0*V**2; #energy stored in capacitor with vacuum as dielectric(J)
E=1-E2; #energy stored in capacitor in polarizing the dielectric(J)
#Result
print "energy stored in capacitor is",E1,"J"
print "energy stored in capacitor in polarizing the dielectric is",E,"J"
#importing modules
import math
from __future__ import division
#Variable declaration
N=5*10**28; #number of atoms(per m**3)
alpha=2*10**-40; #polarizability(Fm**2)
epsilon0=8.854*10**-12;
#Calculation
P=N*alpha;
a=1-(P/(3*epsilon0));
EibyE=1/a; #ratio of internal field to applied field
#Result
print "ratio of internal field to applied field is",round(EibyE,4)