#importing modules
import math
from __future__ import division
#Variable declaration
P=4.3*10**-8; #polarisation(per cm**2)
epsilon0=8.85*10**-12; #relative permeability(F/m)
E=1000; #electric field(V/m)
#Calculations
epsilonr=1+(P/(epsilon0*E)); #relative permittivity
#Result
print "relative permittivity is",round(epsilonr,2)
#importing modules
import math
from __future__ import division
#Variable declaration
k=4;
epsilon0=9*10**-12; #relative permeability(F/m)
E=10**6; #electric field(V/m)
#Calculations
D=k*epsilon0*E; #electric displacement(C/m**2)
P=epsilon0*E*(k-1); #polarisation(C/m**2)
#Result
print "electric displacement is",int(D*10**6),"*10**-6 C/m**2"
print "polarisation is",int(P*10**6),"*10**-6 C/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
k=5;
epsilon0=8.86*10**-12; #relative permeability(F/m)
D=5*10**-12; #electric displacement(C/m**2)
V=0.5*10**-6;
#Calculations
E=D/(k*epsilon0); #electric field(N/C)
P=D*(1-(1/k)); #polarisation(C/m**2)
dm=P*V; #induced dipole moment(cm)
#Result
print "electric field is",round(E,3),"N/C"
print "polarisation is",P,"C/m**2"
print "induced dipole moment is",dm,"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
k=1.000074;
epsilon0=8.85*10**-12; #relative permeability(F/m)
E=1; #electric field(N/C)
n=2.69*10**25; #molecular density
#Calculations
p=epsilon0*E*(k-1)/n; #dipole moment(coulx metre)
#Result
print "dipole moment is",round(p*10**41,2),"*10**-41 coul x metre"
#importing modules
import math
from __future__ import division
#Variable declaration
k=1.000134;
epsilon0=8.85*10**-12; #relative permeability(F/m)
E=90000; #electric field(N/C)
N=6.023*10**26; #avagadro number
#Calculations
n=N/22.4;
p=epsilon0*E*(k-1)/n; #dipole moment(coul-metre)
alpha=p/E; #atomic polarizability(coul-m**2/volt)
#Result
print "dipole moment is",round(p*10**36,2),"*10**-36 coul-metre"
print "atomic polarizability is",round(alpha*10**41,1),"*10**-41 coul-m**2/volt"
#importing modules
import math
from __future__ import division
#Variable declaration
k=7;
epsilon0=8.9*10**-12; #relative permeability(F/m)
V0=100; #potential difference(V)
d=10**-2; #displacement(m)
#Calculations
E0=V0/d; #electric field intensity(volt/m)
E=E0/k; #electric field(N/C)
D=k*E*epsilon0; #electric displacement(C/m**2)
p=epsilon0*E*(k-1); #dipole moment(coul-metre)
#Result
print "electric field is",round(E/10**3,2),"*10**3 volt/m"
print "electric displacement is",D,"C/m**2"
print "dipole moment is",round(p*10**8,1),"*10**-8 C/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #relative permeability(F/m)
chi=35.4*10**-12; #electric susceptibility(coul**2/nt-m**2)
#Calculations
k=1+(chi/epsilon0); #dielectric constant
epsilon=epsilon0*k; #permittivity(coul**2/nt-m**2)
#Result
print "dielectric constant is",k
print "permittivity is",round(epsilon*10**12,2),"*10**-12 coul**2/nt-m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #relative permeability(F/m)
E=100; #electric field(N/C)
epsilonr=1.000074; #dielectric constant
n=2.68*10**27; #density
#Calculations
p=epsilon0*E*(epsilonr-1)/n; #dipole moment(coul-metre)
#Result
print "dipole moment is",round(p*10**41,4),"*10**-41 C/m**2"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #relative permeability(F/m)
R=0.053*10**-9; #radius(nm)
N=9.8*10**26; #number of atoms
#Calculations
alphae=4*math.pi*epsilon0*R**3; #electronic polarizability(Fm**2)
epsilonr=1+(4*math.pi*N*R**3); #relative permittivity
#Result
print "electronic polarizability is",round(alphae*10**41,4),"*10**-41 Fm**2"
print "relative permittivity is",round(epsilonr,4)
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #relative permeability(F/m)
epsilonr=1.0000684; #dielectric constant
N=2.7*10**25; #number of atoms
#Calculations
alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)
#Result
print "electronic polarizability is",alphae,"Fm**2"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.854*10**-12; #relative permeability(F/m)
alphae=10**-40; #dielectric polarizability(Fm**2)
N=3*10**28; #number of atoms
#Calculations
epsilonr=1+(N*alphae/epsilon0); #dielectric constant
#Result
print "dielectric constant is",round(epsilonr,3)
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #relative permeability(F/m)
epsilonr=1.0024; #dielectric constant
N=2.7*10**25; #number of atoms
#Calculations
alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)
#Result
print "electronic polarizability is",round(alphae*10**40,1),"*10**-40 Fm**2"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=1.0000684; #dielectric constant
N=2.7*10**25; #number of atoms
X=1/(9*10**9);
E=10**6; #electric field(V/m)
Z=2; #atomic number
e=1.6*10**-19; #electron charge(coulomb)
#Calculations
R=((epsilonr-1)/(4*math.pi*N))**(1/3); #radius of electron cloud(m)
x=X*E*R**3/(Z*e); #displacement(m)
#Result
print "radius of electron cloud is",round(R*10**11,2),"*10**-11 m"
print "displacement is",round(x*10**17,5),"*10**-17 m"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #dielectric constant
N=3*10**28; #number of atoms
alphae=10**-40; #dielectric polarizability(Fm**2)
#Calculations
x=N*alphae/(3*epsilon0);
epsilonr=(1+(2*x))/(1-x); #dielectric constant
#Result
print "dielectric constant is",round(epsilonr,2)
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #dielectric constant
Na=6.023*10**26; #number of atoms
M=32; #atomic mass
alphae=3.28*10**-40; #dielectric polarizability(Fm**2)
rho=2.08*10**3; #density(kg/m**3)
#Calculations
x=Na*rho*alphae/(M*3*epsilon0);
epsilonr=(1+(2*x))/(1-x); #dielectric constant
#Result
print "dielectric constant is",round(epsilonr,1)
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12; #dielectric constant
Na=6.02*10**26; #number of atoms
epsilonr=3.75; #dielectric constant
M=32; #atomic mass
rho=2050; #density(kg/m**3)
gama=1/3; #internal field constant
#Calculations
N=Na*rho/M; #number of atoms
alphae=((epsilonr-1)/(epsilonr+2))*(3*epsilon0/N); #electronic polarizability(Fm**2)
#Result
print "electronic polarizability is",round(alphae*10**40,2),"*10**-40 Fm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=4.94; #dielectric constant
n2=2.69;
#Calculations
x=(epsilonr-1)/(epsilonr+2);
y=(n2-1)/(n2+2);
alpha=1/((x/y)-1); #ratio between electronic and ionic polarizability
#Result
print "ratio between electronic and ionic polarizability is",round(alpha,3)
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=5.6; #dielectric constant
n=1.5;
#Calculations
x=(epsilonr+2)/(epsilonr-1);
y=(n**2-1)/(n**2+2);
alpha=(1-(x*y))*100; #percentage of ionic polarizability
#Result
print "percentage of ionic polarizability is",round(alpha,1),"%"