#pg 357
#calculate the Fermi energy
#Given :
n =8.48*10**28; # number of conduction electrons / m**3
#calculations
Ef = 3.65*10**-19*(n**0.6667);#Fermi energy in eV
#results
print "Fermi energy (eV) = ",round(Ef,2)
#pg 358
#calculate the Fraction of electrons which are excited
#Given :
Ef = 7.04 ; # Ef for copper in eV
kT = 0.026; # kT value at room temperature in eV
F = (3/2.)*(0.026/7.04); # Fraction of electrons
#results
print "Fraction of electrons which are excited are",round(F,4),"or",round(F*100,2),"percentage."
#pg 370
#calculate the resistivity of Ge, Si
#Given :
ni1 = 2.5*10**19; # per m**3 for Ge
ni2 = 1.5*10**16; # per m**3 for Si
mu_e1 = 0.38; # mobility of free electrons for Ge in m**2/Vs
mu_h1 = 0.18; #mobility of holes for Ge in m**2/Vs
mu_e2 = 0.13;#mobility of free electrons for Si in m**2/Vs
mu_h2 = 0.05;#mobility of holes for Si in m**2/Vs
e = 1.6*10**-19; # charge of an electron in C
#calculations
sigma1 = ni1*e*(mu_e1 + mu_h1); # intrinsic conductivity in mho m**-1 for Ge
sigma2 = ni2*e*(mu_e2 + mu_h2);# intrinsic conductivity in mho m**-1 for Si
rho1 = 1/sigma1; #intrinsic resistivity in ohm m for Ge
rho2 = 1/sigma2;#intrinsic resistivity in ohm m for Si
#results
print "Resistivity of Ge (ohm m) = ",round(rho1,3)
print "Resistivity of Si",round(rho2*10**-3,3),"x 10^3 ohm m"
#pg 370
#calculate the vaue of F1, F2, F3
#Given :
#Fraction F = n/N
import math
from math import exp
Eg = 0.72; # Energy gap in eV
k = 0.026/300;# kT value at 300 K , so k = kT/T
T1 = 30.; # Temperature in K
T2 = 300.; #Temperature in K
T3 = 1210.;#Temperature in K
#Fraction of electrons : n/N = exp(-Eg/2*k*T)
#calculations
F1 = exp(-Eg/(2*k*T1));
F2 = exp(-Eg/(2*k*T2));
F3 = exp(-Eg/(2*k*T3));
#results
print " For 30 K , n/N =",round(F1*10**61,2)," x 10^-61"
print " For 300 K , n/N =",round(F2*10**7,1)," x 10^-7"
print " For 1210 K , n/N = ",round(F3,4)
#pg 371
#calculate the n/N ratio for Germanium, Silicon and diamond
#Given :
import math
from math import exp
Eg1= 0.72; #Energy gap for Germanium in eV
Eg2= 1.10; #Energy gap for Silicon in eV
Eg3= 5.6; #Energy gap for diamond in eV
#Fraction of electron : n/N = exp(-Eg/(2*k*T)) , k*T = 0.026 eV
#calculations
F1 = exp(-Eg1/(2*0.026)); # For Germanium
F2 = exp(-Eg2/(2*0.026)); # For Silicon
F3 = exp(-Eg3/(2*0.026)); # For diamond
#results
print "For Germanium , n/N =",round(F1*10**7,1),"x 10**-7"
print "For Silicon , n/N =",round(F2*10**10,1),"x 10**-10"
print "For diamond, n/N =",round(F3*10**47,1),"x 10**-47"
#pg 371
#calculate the Temperature
#Given :
D = 5*10**28; # density of atoms in silicon per m**3
C = 2.0*10**8; #donor concentration
#calculations
ND = D/C; # donor atoms density per m**3
# ND = 4.82*10**21*T**(3/2)
T = (ND/(4.82*10**21))**(2./3.);
#results
print "Temperature (K) = ",round(T,2)
#pg 372
#calculate the Nd and n,p
#Given :
import math
from math import exp
Ecd = 0.045; # Ec-Ed in eV
Ecf = 0.035; # Ec-Ef in eV
Efd = 0.01;# Ef-Ed in eV
Ev = 0; # in eV
Ef = 1.065; # in eV
me = 9.1*10**-31;# electron mass in kg
m_e = 0.31*me; # free electron mass
m_h = 0.38*me;# hole mass
kT = 0.026; # kT value at room temperature
h = 6.625*10**-34; # planck's constant in Js
#calculations
Nc = 2*((2*math.pi*m_e*kT*1.6*10**-19)/(h**2))**(3/2.); # per m**3
Nv = 2*((2*math.pi*m_h*kT*1.6*10**-19)/(h**2))**(3/2.); # per m**3
#(a)
# Nc*exp[-(Ec-Ef)/kT] = Nd*[1 - 1/(1+ exp[(Ed-Ef)/kT])]
#Ed - Ef = -(Ef-Ed) = - Efd
Nd = (Nc*exp(-Ecf/kT))/(1 - (1/(1+exp(-Efd/kT)))); # per m**3
#(b)
Nd_plus = Nd*(1 - (1/(1 + exp(-Efd/kT)))); # per m**3
#(c)
n = Nc*exp(-Ecf/kT); # per m**3
#(d)
p = Nv*exp((Ev-Ef)/kT);# per m**3
#results
print "Nd =",round(Nd*10**-24,1),"x 10^24 / m^3"
print "Nd_plus =",round(Nd_plus*10**-24,2),"x 10^24 / m^3"
print "n =",round(n*10**-24,2),"x 10^24 / m^3"
print "p =",round(p*10**-6,1),"x 10^6 / m^3"
#pg 374
#calculate the Major and Minor carrier concentration, resistivity
#Given :
ni = 1.5*10**16; # ni for Si in m**-3
mue = 0.135; # mobility of free electrons in m**2/Vs
muh = 0.048; # mobility of holes in m**2/Vs
Nd = 10**21; # phosphorus atoms/m**3
e = 1.6*10**-19;# charge of an electron in C
#calculations
#(a)
n = Nd; # electrons/m**3
#(b)
p = ni**2/Nd; # holes/m**3
#(c)
sigma = e*(n*mue + p*muh); # conductivity in mho m**-1
rho = 1/sigma; # resistivity in ohm m
#results
print "Major carrier concentration =",n*10**-21,"x 10^21 electrons/m^3"
print "Minor carrier concentration =",p*10**-11,"x 10^11 holes/m^3"
print "Resistivity (ohm m) = ",round(rho,3)
#pg 375
#Compare the electrical conductivity of silicon 473 and silicon 300 K
import math
#Given :
Eg = 1.1;# Energy gap in eV
T1 = 300. ;# Temperature in K
T2 = 473.; # Temperature in K (273+ 200 = 473 K)
k = 8.62*10**-5 ; # in eV
#calculations
# sigma = A*exp(-Eg/(2*k*T))
#Ratio = sigma_473/sigma_300
Ratio = math.exp((-Eg/(2*k))*((1/T2)-(1/T1)));
#results
print "Thus, sigma_473 is",round(Ratio,0),"times sigma_300"
#pg 387
#calculate the wavelength of Ge, Si and GaAs
#Given :
Eg1 = 0.72; # Energy gap for Ge in eV
Eg2 = 1.1; # Energy gap for Si in eV
Eg3 = 1.32; # Energy gap for GaAs in eV
# lambda = c/v = (c*h)/Eg or lambda(A) = 12422/Eg (eV)
#calculations
lambda1 = 12422/Eg1; # wavelength in A (Ge)
lambda2 = 12422/Eg2; # wavelength in A (Si)
lambda3 = 12422/Eg3; # wavelength in A (GaAs)
#results
print "Wavelength for Ge (A) = ",round(lambda1,1)
print "Wavelength for Si (A) = ",round(lambda2,1)
print "Wavelength for GaAs (A) = ",round(lambda3,2)
#pg 388
#calculate the times conductivity increased
#Given :
sigma = 4*10**-4; # conductivity at room temperature in ohm**-1 m**-1
M = 28.1; # atomic weight in kg/kmole
d = 2330; # density in kg/m**3
dop = 10**8 ;# doping per 10**8 silicon atoms
e = 1.6*10**-19; # charge of an electron in C
mue = 0.135; # mobility of free electrons for silicon in m**2/Vs
Na = 6.023*10**26 ; # Avagadro's constant in atoms/kmole
#calculations
N = (d*Na)/M; #atoms/m**3
Nd = N/dop; # per m**3
n = Nd; # electron concentration / m**3
sigma1 = n*e*mue; # conductivity in ohm**-1 m**-1
t = sigma1/sigma; # number of times the conductivity increased
#results
print "Conductivity increased",round(t,0), "times"
print 'Result obtained differs from that in textbook, because approximate value for sigma1 was considered.'