#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(c)
epsilon0=8.85*10**-12; #permittivity(C/Nm)
r0=236*10**-12; #seperation(m)
IE=5.14; #ionisation energy of Na(eV)
Ea=-3.65; #electron affinity(eV)
#Calculation
V=-e**2/(4*e*math.pi*epsilon0*r0);
BE=IE+Ea+round(V,2); #bond energy(eV)
#Result
print "bond energy is",round(BE,1),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.602*10**-19; #charge of electron(c)
epsilon0=8.85*10**-12; #permittivity(C/Nm)
r0=0.314*10**-9; #seperation(m)
A=1.75; #madelung constant
n=5.77; #repulsive exponent value
IE=4.1; #ionisation energy of K(eV)
Ea=3.6; #electron affinity(eV)
#Calculation
E=-A*e**2*(1-(1/n))/(4*e*math.pi*epsilon0*r0); #energy(eV)
Ce=E/2; #cohesive energy per atom(eV)
x=IE-Ea; #energy(eV)
CE=Ce+(x/2); #total cohesive energy per atom(eV)
#Result
print "total cohesive energy per atom is",round(CE,4),"eV"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.602*10**-19; #charge of electron(c)
epsilon0=8.85*10**-12; #permittivity(C/Nm)
r0=0.281*10**-9; #seperation(m)
alpham=1.748; #madelung constant
n=9; #repulsive exponent value
#Calculation
E=-alpham*e**2*(1-(1/n))/(4*e*math.pi*epsilon0*r0); #cohesive energy(eV)
#Result
print "cohesive energy is",round(E,3),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(c)
epsilon0=8.85*10**-12; #permittivity(C/Nm)
r0=2.5*10**-10; #seperation(m)
#Calculation
PE=e**2/(4*e*math.pi*epsilon0*r0); #potential energy(eV)
#Result
print "potential energy is",round(PE,3),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1;
n=9; #repulsive exponent value
a=1.748*10**-28;
r0=0.281*10**-9; #seperation(m)
#Calculation
Ur0=-a*(1-(m/n))/(e*r0**m); #cohesive energy(eV)
#Result
print "cohesive energy is",round(Ur0,2),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(c)
epsilon0=8.85*10**-12; #permittivity(C/Nm)
r0=0.281*10**-9; #seperation(m)
IE=5.14; #ionisation energy of Na(eV)
Ea=-3.61; #electron affinity(eV)
#Calculation
V=-e**2/(4*e*math.pi*epsilon0*r0);
CE=IE+Ea+round(V,2); #cohesive energy(eV)
#Result
print "cohesive energy is",CE,"eV"