#importing modules
import math
from __future__ import division
#Variable declaration
fE=1/100; #probability(%)
E_EF=0.5; #fermi energy(eV)
Kb=1.38*10**-23; #boltzmann constant
e=6.24*10**18; #conversion faction from J to eV
#Calculation
x=E_EF/(Kb*e);
y=math.log(1/fE);
T=x/y; #temperature(K)
#Result
print "temperature is",round(T,2),"K"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
Ef=7*1.602*10**-19; #fermi energy(J)
h=6.63*10**-34; #planck's constant
m=9.11*10**-31; #mass(kg)
#Calculation
x=h**2/(8*m);
y=(3/math.pi)**(2/3);
n23=Ef/(x*y);
n=n23**(3/2); #total number of free electrons(per m**3)
#Result
print "total number of free electrons is",round(n/10**28,4),"**10**28 per m**3"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.54*10**-8; #resistivity of metal(ohm m)
n=5.8*10**28; #number of free electrons(per m**3)
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
#Result
print "relaxation time is",round(tow*10**15,3),"*10**-15 s"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.43*10**-8; #resistivity of metal(ohm m)
n=6.5*10**28; #number of free electrons(per m**3)
e=1.6*10**-19; #charge(c)
m=9.1*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
#importing modules
import math
from __future__ import division
#Variable declaration
L=5; #length(m)
R=0.06; #resistance(ohm)
I=15; #current(A)
ne=3; #number of electrons
rho=2.7*10**-8; #resistivity(ohm m)
w=26.98; #atomic weight
D=2.7*10**3; #density(kg/m**3)
Na=6.025*10**26; #avagadro number(per k mol)
#Calculation
n=ne*Na*D/w; #number of conduction electrons(per m**3)
mew=1/(n*e*rho); #mobility of electrons(m**2/Vs)
vd=I*R/(L*rho*n*e); #drift velocity(m/s)
#Result
print "number of conduction electrons is",round(n/10**29,4),"*10**29 per m**3"
print "mobility of electrons is",round(mew,5),"m**2/Vs"
print "drift velocity is",round(vd*10**4,1),"*10**-4 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
ne=1; #number of electrons
rho=1.73*10**-8; #resistivity(ohm m)
w=63.5; #atomic weight
e=1.6*10**-19; #charge(c)
D=8.92*10**3; #density(kg/m**3)
Na=6.02*10**26; #avagadro number(per k mol)
#Calculation
n=ne*Na*D/w;
mew=1/(n*e*rho); #mobility of electrons(m**2/Vs)
#Result
print "mobility of electrons is",round(mew,5),"m**2/Vs"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
ne=1; #number of electrons
rho=1.721*10**-8; #resistivity(ohm m)
w=63.54; #atomic weight
e=1.6*10**-19; #charge(c)
D=8.95*10**3; #density(kg/m**3)
Na=6.025*10**26; #avagadro number(per k mol)
#Calculation
n=ne*Na*D/w;
mew=1/(n*e*rho); #mobility of electrons(m**2/Vs)
#Result
print "mobility of electrons is",round(mew,5),"m**2/Vs"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.5*10**-8; #resistivity of metal(ohm m)
n=6.5*10**28; #number of free electrons(per m**3)
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.54*10**-8; #resistivity of metal(ohm m)
n=5.8*10**28; #number of free electrons(per m**3)
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
E=1*10**2; #electric field(V/m)
Kb=1.381*10**-23; #boltzmann constant
T=300; #temperature(K)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
vd=e*E*tow/m; #drift velocity(m/s)
mew=vd/E; #mobility(m**2/Vs)
Vth=math.sqrt(3*Kb*T/m); #thermal velocity(m/s)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
print "drift velocity is",round(vd,1),"m/s"
print "mobility is",round(mew*10**2,1),"*10**-2 m**2/Vs"
print "thermal velocity is",round(Vth/10**5,2),"*10**5 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
EF=5.5*1.602*10**-19; #fermi energy of silver(J)
tow=3.97*10**-14; #relaxation time(s)
m=9.11*10**-31; #mass(kg)
#Calculation
vf=math.sqrt(2*EF/m); #fermi velocity(m/s)
lamda=vf*tow; #mean free path(m)
#Result
print "fermi velocity is",round(vf/10**6,2),"*10**6 m/s"
print "mean free path is",round(lamda*10**8,2),"*10**-8 m"
#importing modules
import math
from __future__ import division
#Variable declaration
ne=1; #number of electrons
M=107.9; #atomic weight
D=10500; #density(kg/m**3)
Na=6.025*10**26; #avagadro number(per k mol)
m=9.11*10**-31; #mass(kg)
h=6.63*10**-34; #planck's constant
#Calculation
n=ne*Na*D/M;
x=h**2/(8*m);
y=(3/math.pi)**(2/3);
Ef=x*y*n**(2/3); #fermi energy(eV)
#Result
print "fermi energy is",round(Ef*10**19,2),"*10**-19 J"
#importing modules
import math
from __future__ import division
#Variable declaration
A=10*10**-6; #area(m**2)
ne=1; #number of electrons
I=100; #current(amperes)
w=63.5; #atomic weight
e=1.6*10**-19; #charge(c)
D=8.92*10**3; #density(kg/m**3)
Na=6.02*10**26; #avagadro number(per k mol)
#Calculation
n=ne*Na*D/w;
J=I/A;
vd=J/(n*e); #drift velocity of free electrons(m/s)
#Result
print "drift velocity of free electrons is",round(vd*10**3,4),"*10**-3 m/s"