#importing modules
import math
from __future__ import division
#Variable declaration
L=1.33*10**-22; #angular momentum(kg m**2/sec)
B=0.025; #magnetic field(Wb/m**2)
m=6.68*10**-27; #mass of alpha particle(kg)
q=3.2*10**-19; #charge of alpha particle(c)
e=1.6*10**-19; #charge of electron(c)
#Calculation
w=(B*q)/m; #angular velocity
E=0.5*L*w; #KE of particle(J)
E=E/e; #KE of particle(eV)
#Result
print "KE of particle is",round(E,2),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
R=0.35; #radius of cyclotron(m)
n=1.38*10**7; #frequency(Hz)
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19; #charge of proton(c)
#Calculation
B=(2*math.pi*n*m)/q; #magnetic field induction(Wb/m**2)
E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)
E=E/q; #maximum energy of proton(eV)
#Result
print "magnetic field induction is",round(B,3),"Wb/m**2"
print "maximum energy of proton is",round(E/10**6,1),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19; #charge of electron(c)
V=1000; #potential difference(V)
B=1.19*10**-3; #magnetic field of induction(Wb/m**2)
#Calculation
#due to potential difference V, electron is accelerated
#eV=0.5*m*(v^2)
#due to transverse magnetic field B electron moves in circular path of radius R
#(m*(v^2))/R=BeV
v=math.sqrt((2*e*V)/m); #velocity(m/sec)
R=(m*v)/(B*e); #radius of electron trajectory(m)
L=m*v*R; #angular momentum(kg m**2/sec)
#Result
print "radius of electron trajectory is",round(R*100,3),"cm"
print "angular momentum of electron is",round(L/10**-28,2),"*10**-28 kg m**2/sec"
print "answer for angular momentum varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
vx=1.7*10**7; #horizontal velociy(m/sec)
Ey=3.4*10**4; #electric field(V/m)
x=3*10**-2; #horizontal displacement(m)
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19; #charge of electron(c)
#Calculation
t=x/vx; #time(sec)
#y=0.5*ay*(t^2)
ay=(e*Ey)/m; #acceleration(m/sec**2)
y=0.5*ay*(t**2); #vertical displacement(m)
Bz=Ey/vx; #magnitude of magnetic field(Wb/m**2)
#Result
print "vertical displacement of electron is",round(y*100,4),"cm"
print "answer varies due to rounding off errors"
print "magnitude of magnetic field is",Bz,"Wb/m**2"
print "direction of field is upward as Ey is downward"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19; #charge of proton(c)
B=0.5; #magnetic field(Wb/m**2)
R=1; #radius of cyclotron(m)
#Calculation
n=((B*q)/(2*math.pi*m)); #frequency of oscillation voltage(Hz)
E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)
E=E/q; #maximum energy of proton(eV)
#Result
print "frequency of oscillation voltage is",round(n/10**6,3),"MHz"
print "maximum energy of proton is",round(E/10**6,3),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
q=3.2*10**-19 #charge of a9lpha particle(c)
m=6.68*10**-27; #mass(kg)
B=1.5; #magnetic field(Wb/m**2)
v=7.263*10**6; #velocity(m/s)
#Calculation
F=B*q*v; #force on particle(N)
T=(2*math.pi*m)/(B*q); #periodic time(sec)
n=1/T; #resonance frequency(Hz)
#Result
print "force on particle is",round(F*10**13,2),"*10**-13 N"
print "periodic time is",round(T*10**8,3),"*10**-8 sec"
print "answer for periodic time varies due to rounding off errors"
print "resonance frequency is",round(n/10**6,2),"MHz"
#importing modules
import math
from __future__ import division
#Variable declaration
n=1.2*10**7; #frequency(Hz)
mp=1.67*10**-27; #mass of proton(kg)
qp=1.6*10**-19; #charge of proton(c)
R=0.5; #radius(m)
malp=6.68*10**-27; #mass of alpha particle(kg)
#Calculation
Bp=(2*math.pi*mp*n)/qp; #flux density for proton(Wb/m**2)
Ep=((Bp**2)*(qp**2)*(R**2))/(2*mp); #energy of proton(J)
Ep=Ep/qp; #energy of proton(eV)
qalp=2*qp; #charge of alpha particle(c)
Balp=(2*math.pi*malp*n)/qalp; #flux density of alpha particle(Wb/m**2)
Ealp=((Balp**2)*(qalp**2)*(R**2))/(2*malp); #energy of alpha particle(J)
Ealp=Ealp/qp; #energy of alpha particle(eV)
#Result
print "flux density for proton is",round(Bp,5),"Wb/m**2"
print "flux density for alpha particle is",round(Balp,4),"Wb/m**2"
print "energy of proton is",round(Ep/10**6,2),"MeV"
print "energy of alpha particle is",round(Ealp/10**6,2),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(c)
me=9.1*10**-31; #mass of electron(kg)
malp=6.68*10**-27; #mass of alpha particle(kg)
B=0.05; #magnetic field(Wb/m**2)
V=20*10**3; #potential difference(V)
#Calculation
q=2*e; #charge of alpha particle(c)
#v=sqrt((2*q*V)/m)
#R=(1/B)*sqrt((2*m*V)/q)
Re=(1/B)*math.sqrt((2*me*V)/e); #radius of electron(m)
Ralp=(1/B)*math.sqrt((2*malp*V)/q); #radius of alpha particle(m)
S=2*Ralp-2*Re; #linear separation between two particles(m)
#Result
print "linear separation between two particles on common boundary wall is",round(S*100,1),"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
V1=200; #potential difference(V)
i=60; #angle(degrees)
r=45; #angle(degrees)
#Calculation
#electrostatic focusing condition (sini/sinr)=(v2/v1)=sqrt(V2/V1)
#0.5mv2=eV
i=i*(math.pi/180); #angle(radian)
r=r*(math.pi/180); #angle(radian)
V2=V1*((math.sin(i)/math.sin(r))**2); #potential difference(V)
pd=V2-V1; #potential difference(V)
#Result
print "potential difference between two regions is",pd,"V"
#importing modules
import math
from __future__ import division
#Variable declaration
E=250; #electric field(V/m)
R=10**-8; #radius of drop(m)
rho=10**3; #density of water(kg/m**3)
#Calculation
#F=mg=qE
m=(4/3)*math.pi*(R**3)*rho; #mass of water drop(kg)
W=m*9.8; #weight of drop
q=W/E; #charge on water drop(C)
#Result
print "charge on water drop is",round(q*10**21,3),"*10**-21 C"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(c)
v=5*10**5; #velocity(m/s)
B=0.3; #flux density(Wb/m**2)
N=6.025*10**26; #avagadro number
M72=72/N; #mass(kg)
M74=74; #mass(kg)
#Calculation
R72=(M72*v)/(B*e); #radius(m)
R74=(R72/72)*M74; #radius(m)
S=2*(R74-R72); #linear separation of two lines(m)
#Result
print "linear separation of two lines is",round(S,3),"m"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
l=5*10**-2; #length(m)
d=0.3; #distance of screen from end of magnetic field(m)
y=0.01; #deflection on screen(m)
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19; #charge of electron(C)
Va=1000; #anode voltage(V)
#Calculation
D=d+(l/2); #distance(m)
B=(y/(D*l))*math.sqrt((2*m*Va)/e); #flux density(Wb/m**2)
#Result
print "flux density is",round(B*10**6,1),"*10**-6 Wb/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of electron(C)
Va=150; #potential difference(V)
m=9.1*10**-31; #mass of electron(kg)
V=20; #potential(V)
D=1/2;
d=10**-2; #distance of seperation(m)
l=10*10**-2; #length(m)
#Calculation
vx=math.sqrt((2*e*Va)/m); #velocity of electron reacting the field(m/s)
ay=(e/m)*(V/d); #acceleration due to deflecting field(m/s**2)
vy=ay*(l/vx); #final velocity attained by deflecting field(m/s)
theta=math.atan(vy/vx); #angle of deflection(radian)
thetaD=theta*(180/math.pi); #angle of deflection(degrees)
Y=D*math.tan(theta); #deflection on screen(m)
S=(Y/V); #deflection senstivity(m/V)
#Result
print "velocity of electron reacting the field is",round(vx/10**6,2),"*10**6 m/s"
print "acceleration due to deflecting field is",round(ay*10**-14,3),"*10**14 m/s**2"
print "final velocity attained by deflecting field is",round(vy/10**6,1),"*10**6 m/s"
print "angle of deflection is",round(thetaD,2),"degrees"
print "answer varies due to rounding off errors"
print "deflection on screen is",round(Y,2),"m"
print "deflection senstivity is",round(S,4),"m/V"
print "answer varies due to rounding off errors"