# Variables
T2 = 235; #K
P = 1.3; #kW
# Calculations and Results
COP = 14000./P/60./60.;
print ("(i) C.O.P. of Carnot refrigerator = %.3f")% (COP)
T1 = T2/COP + T2;
t1 = T1-273;
print ("(ii) Higher temperature of the cycle = %.3f")% (t1), ("0C")
print ("(iii) Heat delivered as heat pump")
Qabs = 14000./60; #Heat absorbed
W = P*60;
Q = Qabs+W;
print ("Q = %.3f")% (Q), ("kJ/min")
COP = Q/W;
print ("COP of heat pump = %.3f")% (COP)
# Variables
T1 = 308.; #K
T2 = 258.; #K
capacity = 12.; #tonne
# Calculations and Results
COP = T2/(T1-T2);
print ("(i) Co-efficient of performance = "), (COP)
print ("(ii) Heat rejected from the system per hour")
W = capacity*14000./5.16;
Q = capacity*14000.+W;
print ("Q = %.3f")% (Q), ("kJ/h")
P = W/60./60.;
print ("(iii) Power required = %.3f")% (P),("kW")
# Variables
T2 = 268.; #K
T1 = 308.; #K
Q = 29.; #Heat leakage from the surroundings into the cold storage in kW
# Calculations
COP_ideal = T2/(T1-T2);
COP_actual = 1./3*COP_ideal;
W = Q/COP_actual;
# Results
print ("Power required = %.3f")%(W), ("kW")
# Variables
T1 = 293.; #K
T2 = 265.; #K
T0 = 273.; #K
L = 335.; #Latent heat of ice in kJ/kg
cpw = 4.18;
# Calculations
COP = T2/(T1-T2);
Rn = cpw*(T1-T0)+L;
m_ice = COP*3600./Rn;
# Results
print ("ice formed per kWh = %.3f")% (m_ice), ("kg")
# Variables
T1 = 291.; #K
T2 = 265.; #K
T0 = 273.; #K
cpw = 4.18; #kJ/kg
cpi = 2.09; #kJ/kg
L = 334.; #kJ/kg
m = 400.; #kg
# Calculations
COP = T2/(T1-T2);
Rn = cpw*(T1-T0) + L + cpi*(T0-T2);
W = Rn*m/COP/3600; #kJ/s
# Results
print ("Least power = %.3f")% (W), ("kW")
# Variables
cpw = 4.18; #kJ/kg
print ("(i) Quantity of ice produced")
t = 20.; #0C
L = 335.; #kJ/kg
capacity = 280.; #tonnes
# Calculations and Results
Q1 = cpw*t + L; #Heat to be extracted per kg of water (to form ice at 0°C)
Rn = capacity*14000; #kJ/h
m_ice = Rn*24./Q1/1000;
print ("Quantity of ice produced in 24 hours = %.3f")% (m_ice), ("tonnes")
print ("(ii) Minimum power required = "),
T1 = 298.; #K
T2 = 263.; #K
COP = T2/(T1-T2);
W = Rn/COP/3600.; #kJ/s
print ("Power required = %.3f")% (W), ("kW")
# Variables
cp1 = 1.25; #kJ/kg 0C
cp2 = 2.93; #kJ/kg 0C
L = 232. #kJ/kg
T1 = -3. #0C
T2 = -8. #0C
T3 = 25. #0C
# Calculations and Results
Q1 = cp2*(T3-T1) + L + cp1*(T1-T2); #Heat removed in 8 hours from each kg of fish
Q = Q1*20*1000./8 #Heat removed by the plant /min
capacity = Q/14000.; #tonnes
print ("(i) Capacity of the refrigerating plant = %.3f")% (capacity), ("tonnes")
print ("(ii) Carnot cycle C.O.P. between this temperature range.")
T1 = 298.; #K
T2 = 265.; #K
COP = T2/(T1-T2);
print ("COP of reversed carnot cycle = %.3f")% (COP)
print ("(iii) Power required")
COP_actual = 1./3*COP;
W = Q/COP_actual/3600; #kJ/s
print ("Power = %.3f")% (W), ("kW")
# Variables
T1 = 1273.; #K
T2 = 298.; #K
T3 = 268.; #K
T4 = 298.; #K
# Calculations
#Let Q2/Q1 = r1, r2 = Q3/Q4;
r1 = 298./1273; #Q2/Q1
r2 = 268./298; #Q3/Q4
#Let Q4/Q1 = r
r = (1.-r1)/(1-r2);
# Results
print ("The ratio in which the heat pump and heat engine share the heating load = %.3f")% (r)
# Variables
y = 1.4;
n = 1.35;
cp = 1.003; #kJ/kg K
p2 = 1.; #bar
p1 = 8.; #bar
T3 = 282.; #K
T4 = 302.; #K
T1 = T4;
# Calculations
T4 = T3*(p1/p2)**((n-1)/n);
T2 = T1*(p2/p1)**((n-1)/n);
Q1 = cp*(T3-T2); #Heat extracted from cold chamber per kg of air
Q2 = cp*(T4-T1); #Heat rejected in the cooling chamber per kg of air
cv = cp/y;
R = cp-cv;
W = n/(n-1)*R*((T4-T3) - (T1-T2));
COP = Q1/W;
# Results
print ("COP = %.3f")% (COP)
# Variables
p1 = 1000.; #kPa
p2 = 100. #kPa
p4 = p1;
p3 = p2;
E = 2000. # Refrigerating effect produced in kJ/min
T3 = 268.; #K
T1 = 303.; #K
y = 1.4;
# Calculations and Results
print ("(i) Mass of air circulated per minute")
T2 = T1*(p2/p1)**((y-1)/y);
e = cp*(T3-T2); #Refrigerating effect per kg; kJ/kg
m = E/e;
print ("m = %.3f")% (m), ("kg/min")
print ("(ii) Compressor work (Wcomp.), expander work (Wexp.) and cycle work (Wcycle)")
T4 = T3*(p4/p3)**((y-1)/y);
Wcomp = y/(y-1)*m*R*(T4-T3);
print ("Compressor work = %.3f")% (Wcomp), ("kJ/min")
Wexp = y/(y-1)*m*R*(T1-T2);
print ("Expander work = %.3f")% (Wexp), ("kJ/min")
W_cycle = Wcomp-Wexp;
print ("Wcycle = %.3f")% (W_cycle), ("kJ/min")
print ("(iii) C.O.P. and power required")
COP = E/W_cycle;
print ("COP = %.3f")% (COP)
P = W_cycle/60;
print ("Power required = %.3f")% (P), ("kW")
import math
# Variables
y = 1.4;
cp = 1.003; #kJ/kg K
T3 = 289.; #K
T1 = 314.; #K
p1 = 5.2; #bar
p2 = 1.; #bar
capacity = 6.; #tonnes
R = 287.; #J/kg K
l = 0.2; #m
# Calculations and Results
T4 = T3*(p1/p2)**((y-1)/y);
T2 = T1*(p2/p1)**((y-1)/y);
COP = T2/(T1-T2);
print ("(i) C.O.P. = %.3f")%(COP)
e = cp*(T3-T2); #Refrigerating effect per kg of air
E = capacity*14000; #Refrigerating effect produced by the refrigerating machine in kJ/h
m = E/e/60;
print ("(ii)mass of air in circulation = %.3f")%(m),("kg/min")
V3 = m*R*T3/p2/10**5;
print ("(iii)Piston displacement of compressor"),(" = %.2f")%(V3),("m^3/min")
V_swept = V3/2/240;
V2 = m*R*T2/p2/10**5;
V_swept = V2/2/240;
print ("Piston displacement of expander"),(" = %.3f")%(V2),("m^3/min")
d_c = math.sqrt(V_swept/l/math.pi*4);
print ("(iv)Diameter or bore of the expander cylinder = %.0f")%(d_c*1000), ("mm")
d_c = math.sqrt(V_swept/l/math.pi*4);
print ("Diameter or bore of the compressor cylinder = %.0f")%(d_c*1000),("mm")
W = capacity*14000/COP/3600;
print ("(v) Power required to drive the unit"),(" = %.3f")%(W),("kW")
# Answers are slightly different because of rounding error.
# Variables
m = 6.; #kg/min
n_relative = 0.50;
cpw = 4.187; #kJ/kg K
L = 335.; #kJ/kg
h_f2 = 31.4; #kJ/kg
h_fg2 = 154.; #kJ/kg
h_f3 = 59.7; #kJ/kg
h_fg3 = 138.; #kJ/kg
h_f4 = 59.7; #kJ/kg
x2 = 0.6;
s_f3 = 0.2232; #kJ/kg K
s_f2 = 0.1251; #kJ/kg K
T2 = 268.; #K
T3 = 298.; #K
# Calculations
h2 = h_f2+x2*h_fg2;
x3 = ((s_f2-s_f3)+x2*(h_fg2/T2))*T3/h_fg3;
h3 = h_f3+x3*h_fg3;
h1 = h_f4;
COP_th = (h2-h1)/(h3-h2); #Theoritical COP
COP = n_relative*COP_th;
Q = cpw*(20-0) + L; #Heat extracted from 1 kg of water at 20°C for the formation of 1 kg of ice at 0°C
m_ice = COP*m*(h3-h2)/Q*60*24/1000; #in 24 hours
# Results
print ("m_ice = %.3f")%(m_ice), ("tonnes")
# Variables
L = 335.; #kJ/kg
h3 = 1319.22; #kJ/kg
h1 = 100.04; #kJ/kg
h4 = h1;
s_f2 = -2.1338; #kJ/kg K
s_g2 = 5.0585; #kJ/kg K
s_g3 = 4.4852; #kJ/kg K
h_f2 = -54.56; #kJ/kg
h_g2 = 1304.99; #kJ/kg
# Calculations
x2 = (s_g3-s_f2)/(s_g2-s_f2);
h2 = h_f2+x2*(h_g2-h_f2);
COP_theoritical = (h2-h1)/(h3-h2);
COP_actual = 0.62*COP_theoritical;
RE = COP_actual*(h3-h2); #Actual refrigerating effect per kg
Q = 28.*1000.*L/24./3600; #Heat to be extracted per second
m = Q/RE; #Mass of refrigerant circulated per second
W = m*(h3-h2);
# Results
print ("Power required = %.3f")%(W), ("kW")
# Variables
h_f2 = 158.2; #kJ/kg
x2 = 0.62;
h_fg2 = 1280.8;
h1 = 298.9; #kJ/kg
h_f4 = h1;
s_f2 = 0.630; #kJ/kg K
T2 = 268.; #K
T3 = 298.; #K
s_f3 = 1.124; #kJ/kg K
h_fg3 = 1167.1; #kJ/kg
m = 6.4; #kg/min
cp = 4.187;
L = 335.; #kJ/kg
h_f3 = 298.9; #kJ/kg
# Calculations
h2 = h_f2+x2*h_fg2;
x3 = ((s_f2-s_f3)+x2*h_fg2/T2)/h_fg3*T3;
h3 = h_f3+x3*h_fg3;
COP_theoritical = (h2-h1)/(h3-h2);
COP_actual = 0.55*COP_theoritical;
W1 = 81.87 #h3-h2; #Work done per kg of refrigerant
W = m*W1/60; #Work done per second kJ/s
Q = round(15*cp+L,1);
m_ice = W*3600.*24/Q;
# Results
print ("Amount of ice formed in 24 hours = %.3f")% (m_ice), ("kg")
# Note : Answer is slightly different because of rounding error.
# Variables
RE = 5*14000./3600; #Total refrigeration produced in kg/s
h2 = 183.19; #kJ/kg
h3 = 209.41; #kJ/kg
h4 = 74.59; #kJ/kg
h1 = h4;
# Calculations and Results
RE_net = h2-h1; #Net refrigerating effect produced per kg
m = RE/RE_net;
print ("(i) The refrigerant flow rate"),(" = %.3f")% (m), ("kg/s")
COP = (h2-h1)/(h3-h2);
print ("(ii) The C.O.P. = %.3f")% (COP)
P = m*(h3-h2);
print ("(iii) The power required to drive the compressor = %.3f")%(P), ("kW")
rate = m*(h3-h4);
print ("(iv) The rate of heat rejection to the condenser = %.3f")%(rate),("kW")
print ("(iii)")
# Variables
h2 = 344.927; #kJ/kg
h4 = 228.538; #kJ/kg
h1 = h4;
cpv = 0.611; #/kJ/kg0C
# s2 = s3
t3 = 39.995; #0C
# Calculations
h3 = 363.575+cpv*(t3-30);
Rn = h2-h1;
W = h3-h2;
COP = Rn/W;
# Results
print ("COP = %.3f")% (COP)
cp = 2.0935; #kJ/kg 0C
Q = 2400./24./3600*(4.187*(15-0)+335+cp*(0-(-5)))
W = Q/COP;
print ("Work required = %.3f")% (W), ("kW")
# Variables
h2 = 352.; #kJ/kg
h3 = 374.; #kJ/kg
h4 = 221.; #kJ/kg
h1 = h4;
v2 = 0.08; #m**3/kg
rpm = 500.;
D = 0.2;
L = 0.15;
n_vol = 0.85;
# Calculations
RE = h2-h1;
V = math.pi/4*D**2*L*rpm*2*n_vol;
m = V/v2;
# Results
print ("(ii)Mass of refrigerant circulated per minute = %.3f")% (m), ("kg/min")
cc = 50.*(h2-h1)*60./14000.;
print ("(iii) Cooling capacity in tonnes of refrigeration = %.3f")%(cc), ("TR")
COP = (h2-h1)/(h3-h2);
print ("(iv)COP = %.3f")% (COP)
# Variables
te = -10.; #0C
tc = 40.; #0C
h3 = 220.; #kJ/kg
h2 = 183.1; #kJ/kg
h1 = 74.53; #kJ/kg
h_f4 = 26.85; #kJ/kg
m = 1.; #kg
# Calculations and Results
COP = (h2-h1)/(h3-h2);
print ("(i) The C.O.P. the cycle = %.3f")%(COP)
RC = m*(h2-h1);
print ("(ii) Refrigerating capacity = %.3f")%(RC),("kJ/min")
CP = m*(h3-h2)/60;
print ("Compressor power = %.3f")% (CP), ("kJ/s")
import math
# Variables
h2 = 178.61; #kJ/kg
h3a = 203.05; #kJ/kg
h_f4 = 74.53; #kJ/kg
h1 = h_f4;
s3a = 0.682; #kJ/kg K
s2 = 0.7082; #kJ/kg K
cp = 0.747; #kJ/kg K
T3a = 313.; #K
CE = 20.; #Cooling effect
C = 0.03;
v_g = 0.1088;
p_d = 9.607;
p_s = 1.509;
n = 1.13;
# Calculations
m = CE/(h2-h1);
T3 = T3a*math.e**((s2-s3a)/cp)
h3 = h3a+cp*(T3-T3a);
P = m*(h3-h2);
# Results
print ("Power required by the machine = %.3f")%(P), ("kW")
n_vol = 1+C-C*(p_d/p_s)**(1./n); #Volumetric efficiency
V1 = m*v_g; #volume of refrigerant at the intake conditions
V_swept = V1/n_vol;
V = V_swept*60./300;
print ("Piston print lacement = %.5f")% (V), ("m**3")
import math
# Variables
h2 = 1450.22; #kJ/kg
h3a = 1488.57; #kJ/kg
h_f4 = 366.072; #kJ/kg
cpl2 = 4.556; #kJ/kg K
cpv1 = 2.492; #kJ/kg K
cpv2 = 2.903; #kJ/kg K
T1 = 303.; #K
T2 = 308.; #K
s3a = 5.2086; #kJ/kg K
s2 = 5.755; #kJ/kg K
T3a = 308.; #K
N = 1000.;
# Calculations
h_f4a = h_f4-cpl2*(T2-T1);
h1 = h_f4a;
T3 = T3a*math.e**((s2-s3a)/cpv2);
h3 = h3a+cpv2*(T3-T3a);
m = 50./(h2-h1);
# Results
P = m*(h3-h2);
print ("(i) Power required = %.3f")%(P), ("kW")
print ("(ii) Cylinder dimensions ")
D = (m*4*60/math.pi/1.2/N/0.417477)**(1./3);
print ("Diameter of cylinder = %.3f")% (D), ("m")
L = 1.2*D;
print ("Length of the cylinder = %.3f")% (L), ("m")
# Variables
cooling_load = 150.; #W
n_vol = 0.8;
N = 720.; #rpm
h2 = 183.; #kJ/kg
h1 = 74.5; #kJ/kg
v2 = 0.08; #m**3/kg
# Calculations
m = cooling_load/(108.5*1000);
d = m*v2/n_vol;
# Results
print ("Mass flow rate of the refrigerant = %.6f")% (m),("kJ/s")
print ("Displacement volume of the compressor = %6f")% (d), ("m**3/s")
# Variables
h2 = 183.2; #kJ/kg
h3 = 222.6; #kJ/kg
h4 = 84.9 #kJ/kg
v2 = 0.0767; #m**3/kg
v3 = 0.0164; #m**3/kg
v4 = 0.00083; #m**3/kg
# Calculations
V = 1.5*1000*10**(-6); #Piston print lacement volume m**3/revolution
n_vol = 0.80;
print ("(i) Power rating of the compressor (kW)")
discharge = V*1600*n_vol; #Compressor discharge
m = discharge/v2;
P = m/60*(h3-h2); #kW
print ("Power = %.3f")% (P), ("kW")
RE = m/60*(h2-h4);
print ("(ii) Refrigerating effect = %.3f")% (RE), ("kW")
# Variables
COP = 6.5;
W = 50.; #kW
h3a = 201.45; #kJ/kg
h_f4 = 69.55; #kJ/kg
h1 = h_f4;
h2 = 187.53; #kJ/kg
cp = 0.6155; #kJ/kg
t3a = 35.; #0C
# Calculations
RC = W*COP; #Refrigerating capacity
Q1 = h2-h_f4; #Heat extracted per kg of refrigerant
rate = RC/Q1; #Refrigerant flow rate
Q2 = W/rate; #Heat input per kg
h = h2+Q2; #Enthalpy of vapour after compression
Q = h-h3a; #Superheat
t3 = Q/cp+t3a;
# Results
print ("The refrigerant temperature = %.3f")% (t3), ("°C")
import math
# Variables
Q1 = 500.; #total heating requirement of 500 kJ/min
n_compressor = 0.8;
s1 = 0.7035; #kJ/kg K
s2 = 0.6799; #kJ/kg K
T2 = 322.31; #K
cp = 0.7; #kJ/kg K
h_v2 = 206.24; #kJ/kg
h_l2 = 84.21; #kJ/kg
h_v1 = 182.07 #kJ/kg
# Calculations
Q2 = Q1/n_compressor; #Heat rejected by the cycle
#Entropy of dry saturated vapour at 2 bar = Entropy of superheated vapour at 12 bar
T = T2*math.e**((s1-s2)/cp);
H = h_v2+cp*(T-T2); #Enthalpy of superheated vapour at 12 bar
Q3 = H-h_l2; #Heat rejected per cycle
m = Q2/Q3; #kg/min
W = m*(H-h_v1)/60; #kW
W_actual = W/n_compressor;
# Results
print ("Power = %.3f")% (W_actual), ("kW")
# Variables
h2a = 183.2; #kJ/kg K
cpv = 0.733; #Vapour specific heat in kJ/kg K
cpl = 1.235; #Liquid specific heat in kJ/kg K
s2a = 0.7020; #Entropy of vapour in kJ/kg K
s3a = 0.6854; #Entropy of vapour in kJ/kg K
T2 = 270.; #K
T2a = 263.; #K
T3a = 303.; #K
h3a = 199.6; #kJ/kg
h_f4 = 64.6; #kJ/kg
dT4 = 6.; #dT4 = T4-T4a
v2a = 0.0767;
n = 2.; #number of cylinder
# Calculations and Results
h2 = h2a+cpv*(T2-T2a);
s2 = s2a+cpv*math.log(T2/T2a);
T3 = T3a*math.e**((s2-s3a)/cpv);
h3 = h3a+cpv*(T3-T3a);
h_f4a = h_f4-cpl*dT4;
h1 = h_f4a;
v2 = v2a/T2a*T2;
RE = h2-h1;
print ("(i) Refrigerating effect per kg = "), (RE), ("kJ/kg")
m = 2400/RE;
print ("(ii) Mass of refrigerant to be circulated per minute = %.3f")% (m), ("kg/min")
v = m*v2;
print ("(iii) Theoretical piston print lacement per minute = %.3f")%(v), ("m**3/min")
P = m/60*(h3-h2);
print ("(iv) Theoretical power required to run the compressor = %.3f")% (P), ("kW")
Q = m*(h3-h_f4a);
print ("(v) Heat removed through the condenser per min = %.3f")% (Q), ("kJ/min")
print ("(vi) Theoretical bore (d) and stroke (l)")
d = (v/n/math.pi*4/1.25/1000)**(1./3)*1000;
print ("Theroritical bore = %.3f")% (d), ("mm")
l = 1.25*d;
print ("stroke = %.3f")% (l), ("mm")
# Variables
h2 = 1597.; #kJ/kg
h3 = 1790.; #kJ/kg
h4 = 513.; #kJ/kg
h1 = h4;
t3 = 58.; #0C
x1 = 0.13;
tc = 27.; #0C
capacity = 10.5; #tonnes
# Calculations and Results
t = t3-tc;
print ("(i) Condition of the vapour at the outlet of the compressor = "), (t), ("C")
print ("(ii) Condition of vapour at entrance to evaporator = "), (x1)
COP = (h2-h1)/(h3-h2);
print ("(iii)COP = %.3f") %(COP)
P = capacity*14000./COP/3600;
print ("(iv) Power required = %.3f")% (P), ("kW")
import math
# Variables
h2 = 615.; #kJ/kg
h3 = 664.; #kJ/kg
h4 = 446.; #kJ/kg
h1 = h4;
v2 = 0.14; #m**3/kg
capacity = 20.; #tonnes
n = 6.; #number of cylinder
# Calculations and Results
RE = h2-h1;
print ("(i) Refrigerating effect per kg = "), (RE), ("kJ/kg")
m = capacity*14000./RE/60.;
print ("(ii) Mass of refrigerant to be circulated per minute = %.3f")% (m), ("kg/min")
v = v2*m;
print ("(iii) Theoretical piston print lacement = %.3f")% (v), ("m**3/min")
P = m/60*(h3-h2);
print ("(iv) Theoretical power = %.3f")% (P), ("kW")
COP = (h2-h1)/(h3-h2);
print ("(v)COP = %.3f")% (COP)
Q = m*(h3-h4);
print ("(vi) Heat removed through the condenser = %.3f")% (Q), ("kJ/min")
print ("(vii) Theoretical print lacement per minute per cylinder")
d = (v/n*4/math.pi/950.)**(1./3)*1000.;
print ("Diameter of cylinder = %.3f")% (d), ("mm")
l = d;
print ("Stroke length = %.3f")% (l), ("mm")