# Variables
m_s = 50. #kg
m_w = 1.5; #kg
# Calculations
x = m_s/(m_s+m_w);
# Results
print ("dryness fraction = %.3f")%(x)
# Variables
V = 0.6; #m**3
m = 3.0; #kg
p = 5.; #bar
v = V/m;
# At 5 bar: From steam tables
v_g = 0.375; #m**3/kg
v_f = 0.00109; #m**3/kg
# Calculations
v_fg = v_g - v_f;
x = 1-((v_g - v)/v_fg);
# Results
print ("(i) Mass and volume of liquid")
m_liq = m*(1-x);
print ("mass of liquid = %.3f")%(m_liq),("kg")
V_liq = m_liq*v_f;
print ("volume of liquid = %.3f")%(V_liq),("m**3")
print ("(ii) Mass and volume of vapour")
m_vap = m*x;
print ("mass of vapour = %.3f")%(m_vap),("kg")
V_vap = m_vap*v_g;
print ("volume of vapour = %.3f")%(V_vap),("m**3")
# Variables
V = 0.05; #m**3
m_f = 10.; #kg
# From steam tables corresponding to 245 0C
p_sat = 36.5; #bar
v_f = 0.001239; #m**3/kg
v_g = 0.0546; #m**3/kg
h_f = 1061.4; #kJ/kg
h_fg = 1740.2; #kJ/kg
s_f = 2.7474; #kJ/kg.K
s_fg = 3.3585; #kJ/kg.K
# Calculations and Results
print ("(i) The pressure = "),(p_sat),("bar")
print ("(ii) The mass")
V_f = m_f*v_f;
V_g = V - V_f;
m_g = V_g/v_g;
m = m_f+m_g;
print ("The total mass of mixture = %.3f")%(m),("kg")
print ("(iii) The specific volume")
v_fg = v_g-v_f;
x = m_g/(m_g+ m_f);
v = v_f+x*v_fg;
print ("specific volume = %.3f")%(v),("m**3/kg")
print ("(iv)The specific enthalpy")
h = h_f+x*h_fg;
print ("specific enthalpy = %.3f")%(h),("kJ/kg")
print ("(v)The specific entropy")
s = s_f+x*s_fg;
print ("specific entropy = %.3f")%(s),("kJ/kg.K")
print ("(vi)The specific internal enegy")
u = h-(p_sat*v*10**2); #kJ/kg
print ("specific internal energy = %.3f")%(u),("kJ/kg")
# Variables
m_w = 2.; #kg
t_w = 25.; #0C
p = 5.; #bar
x = 0.9;
c_pw = 4.18;
# at 5 bar; from steam tables
h_f = 640.1; #kJ/kg
h_fg = 2107.4; #kJ/kg
# Calculations and Results
h = h_f+x*h_fg;
Qw = c_pw*(t_w-0);
print ("Sensible heat associated with 1kg of water, Qw = %.3f")%(Qw),("kJ")
Q = h-Qw;
print ("Net quantity of heat to be supplies per kg of water, Q = %.3f")%(Q),("kJ")
Q_total = m_w*Q;
print ("Total amount of heat supplied, Q_total = "),(Q_total),("kJ")
# Variables
m = 4.4; #kg
p = 6.; #bar
t_sup = 250.; #0C
t_w = 30.; #0C
c_ps = 2.2; #kJ/kg
c_pw = 4.18;
# At 6 bar, 250 0C; From steam tables
t_s = 158.8; #0C
h_f = 670.4; #kJ/kg
h_fg = 2085; #kJ/kg
# Calculations and Results
h_sup = h_f+h_fg+ c_ps*(t_sup-t_s);
Qw = c_pw*(t_w-0);
print ("Amount of heat added per kg of water, Qw = "),(Qw)
Q = h_sup-Qw;
print ("Net amount of heat required to be supplied per kg, Q = "),(Q)
Q_total = m*Q;
print ("Total amount of heat required, Q_total = "),(Q_total),("kJ")
# Variables
v = 0.15; #m**3
p = 4.; #bar
x = 0.8;
# At 4 bar: From steam tables
v_g = 0.462; #m**3/kg
h_f = 604.7; #kJ/kg
h_fg = 2133.; #kJ/kg
# Calculations and Results
density = 1/x/v_g;
m = v*density;
print ("mass of 0.15 m**3 steam, m = %.3f")%(m),("kg")
Q = density*(h_f+x*h_fg);
print ("Total heat of 1 m3 of steam which has a mass of 2.7056 kg, Q = %.3f")%(Q),("kJ")
# Variables
m = 1000.; #kJ/kg.K
p = 16.; #bar
x = 0.9;
T_sup = 653.; #K
T_w = 30.; #0C
c_ps = 2.2; #kJ/kg
c_pw = 4.18;
# At 16 bar:From steam tables
T_s = 474.4; #K
h_f = 858.6; #kJ/kg
h_fg = 1933.2; #kJ/kg
# Calculations and Results
H = m*((h_f+x*h_fg)-c_pw*(T_w-0));
print ("(i) Heat supplied to feed water per hour to produce wet steam is given by"),(H),("kJ")
Q = m*((1-x)*h_fg+c_ps*(T_sup-T_s));
print ("(ii) Heat absorbed by superheater per hour, Q = "),(Q),("kJ")
print ("(i) at 0.75 bar, between 100°C and 150°C")
# Variables
# At 100 °C
T1 = 100.; #°C
h_sup1 = 2679.4; #kJ/kg
# At 150 °C
T2 = 150.; #°C
h_sup2 = 2778.2; #kJ/kg
# Calculations and Results
c_ps = (h_sup2-h_sup1)/(T2-T1);
print ("mean specific heat = "),(c_ps)
print ("(ii) at 0.5 bar, between 300°C and 400°C")
T1 = 300; #°C
h_sup1 = 3075.5; #kJ/kg
T2 = 400; #°C
h_sup2 = 3278.9; #kJ/kg
c_ps = (h_sup2-h_sup1)/(T2-T1);
print ("mean specific heat c_ps = "),(c_ps)
# Variables
m = 1.5; #kg
p = 5.; #bar
x1 = 1.;
x2 = 0.6;
p1 = 5.*10**5; #N/m
# At 5 bar: From steam tables
t_s = 151.8; #0C
h_f = 640.1; #kJ/kg
h_fg = 2107.4; #kJ/kg
v_g = 0.375; #m**3/kg
v_g1 = 0.375*10**(-3);
# Calculations and Results
h1 = h_f+h_fg;
V = m*v_g;
u1 = h1-p1*v_g1;
v_g2 = V/m/x2; #m**3/kg
# From steam table corresponding to 0.625 m**3/kg
p2 = 2.9; #bar
print ("Pressure at new state = "),(p2),("bar")
t_s = 132.4; #0C
print ("Temperature at new state = "),(t_s),("°C")
h_f2 = 556.5; #kJ/kg
h_fg2 = 2166.6; #kJ/kg
u2 = (h_f2+x2*h_fg2)-p2*x2*v_g2*10**2;
Q = u2-u1; #heat transferred at consmath.tant volume per kg
Q_total = m*Q;
print ("Total heat transfered,Q_total = "),(Q_total),("kJ")
# Variables
V = 0.9; #m**3
p1 = 8.; #bar
x1 = 0.9;
p2 = 4.; #bar
p3 = 3.; #bar
v_g1 = 0.24; #m**3/kg
print ("(i) The mass of steam blown off :")
m1 = V/x1/v_g1;
h_f1 = 720.9; #kJ/kg
h_fg1 = 2046.5; #kJ/kg
h_f2 = 604.7; #kJ/kg
h_fg2 = 2133; #kJ/kg
v_g2 = 0.462; #m**3/kg
# Calculations and Results
h1 = h_f1+x1*h_fg1; #The enthalpy of steam before blowing off
h2 = h1;
x2 = (h1-h_f2)/h_fg2;
m2 = x1/(x2*v_g2);
m = m1-m2;
print ("Mass of steam blown off = %.3f")%(m),("kg")
print ("(ii) Dryness fraction of steam in the vessel after cooling")
v_g3 = 0.606; #m**3/kg
x3 = x2*v_g2/v_g3;
print ("dryness fraction = %.4f")%(x3)
x3 = 0.699
print ("(iii) Heat lost during cooling")
h_f3 = 561.4; #kJ/kg
h_fg3 = 2163.2; #kJ/kg
h3 = h_f3+x3*h_fg3;
u2 = h2-p2*x2*v_g2*10**2; #kJ/kg
u3 = h3-p3*x3*v_g3*10**2; #kJ/kg
Q = m*(u3-u2);
print ("Heat lost during cooling = %.3f")%(-Q),("kJ")
# Variables
p = 8*10**5; #Pa
x = 0.8;
v_g = 0.240; #m**3/kg
h_fg = 2046.5; #kJ/kg
# Calculations and Results
print ("(i) External work done during evaporation")
W = p*x*v_g/10**3; #kJ
print ("W = "),(W),("kJ")
print ("(ii) Internal latent heat")
Q = x*h_fg-W;
print ("Q = "),(Q),("kJ")
p1 = 10; #bar
import math
p2 = 10; #bar
x1 = 0.85;
V1 = 0.15; #m**3
t_sup2 = 300; #0C
t_sup1 = 179.9; #0C
c_ps = 2.2; #kJ/kg.K
v_g1 = 0.194; #m**3/kg
m = V1/(x1*v_g1);
h_fg1 = 2013.6; #kJ/kg
Q = (1-x1)*h_fg1+c_ps*(t_sup2-t_sup1);
Q_total = m*Q;
print ("Total heat supplied = %.3f")%(Q_total),("kJ")
v_sup2 = v_g1*(t_sup2+273)/(t_sup1+273)
W = p1*(v_sup2 - (x1*v_g1))*10**2;
Percentage = W/Q*100;
print ("Percentage of total heat supplied = %.3f")%(Percentage),("%")
# Variables
p = 18.; #bar
x = 0.85;
h_f = 884.6; #kJ/kg
h_fg = 1910.3; #kJ/kg
v_g = 0.110; #m**3/kg
u_f = 883.; #kJ/kg
u_g = 2598.; #kJ/kg
# Calculations and Results
v = x*v_g;
print ("Specific volume of wet steam = "),(v),("m**3/kg")
h = h_f+x*h_fg;
print ("Specific enthalpy of wet steam = "),(h),("kJ/kg")
u = (1-x)*u_f+ x*u_g;
print ("Specific internal energy of wet steam = "),(u),("kJ/kg")
# Variables
p = 7.; #bar
h = 2550.; #kJ/kg
h_f = 697.1; #kJ/kg
h_fg = 2064.9; #kJ/kg
v_g = 0.273; #m**3/kg
u_f = 696.; #kJ/kg
u_g = 2573.; #kJ/kg
# Calculations and Results
x = (h-h_f)/h_fg;
print ("(i) Dryness fraction = %.3f")%(x)
v = x*v_g;
print ("(ii) Specific volume of wet steam = %.3f")%(v),("m**3/kg")
u = (1-x)*u_f+ x*u_g;
print ("(iii) Specific internal energy of wet steam = %.3f")%(u),("kJ/kg")
# Variables
p = 120.; #bar
v = 0.01721; #m**3/kg
T = 350.; #°C
print ("Temperature = "), (T),("°C")
h = 2847.7; #kJ/kg
print ("specific enthalpy = "), (h),("kJ/kg")
u = h-p*v*10**2; #kJ/kg
print ("Internal energy = "), (u),("kJ/kg")
# Variables
p = 140.; #bar
h = 3001.9; #kJ/kg
T = 400; #0C
# Calculations and Results
print ("Temperature = "),(T), ("°C")
v = 0.01722; #m**3/kg
print ("The specific volume %.3f")%(v), ("m**3/kg")
u = h-p*v*10**2;
print ("specific internal energy = "),(u),("kJ/kg")
# At 10 bar: From steam table for superheated steam
# Variables
h_sup = 3051.2; #kJ/kg
T_sup = 573; #K
T_s = 452.9; #K
v_g = 0.194; #m**3/kg
v_sup = v_g*T_sup/T_s;
p = 10.; #bar
# Calculations and Results
u1 = h_sup-p*v_sup*10**2; #kJ/kg
print ("Internal energy of superheated steam at 10 bar = %.3f")%(u1), ("kJ/kg")
# At 1.4 bar: From steam tables
p = 1.4; #bar
h_f = 458.4; #kJ/kg
h_fg = 2231.9; #kJ/kg
v_g = 1.236; #m**3/kg
x = 0.8;
h = h_f+x*h_fg;
u2 = h-p*x*v_g*10**2; #kJ
du = u2-u1;
print ("Change in internal energy = %.3f")%(du),("kJ")
# Variables
m = 1.; #kg
p = 20.; #bar
T_sup = 400.; #0C
x = 0.9;
c_ps = 2.3; #kJ/kg.K
print ("(i) Internal energy of 1 kg of superheated steam")
# At 20 bar: From steam tables
T_s = 212.4; #0C
h_f = 908.6; #kJ/kg
h_fg = 1888.6; #kJ/kg
v_g = 0.0995; #m**3/kg
# Calculations and Results
h_sup = h_f+h_fg+c_ps*(T_sup-T_s);
v_sup = v_g*(T_sup+273)/(T_s+273);
u = h_sup-p*v_sup*10**2;
print ("Internal energy = %.3f")%(u),("kJ/kg")
print ("(ii) Internal energy of 1 kg of wet steam")
h = h_f+x*h_fg;
u = h-p*x*v_g*10**2;
print ("Internal energy = %.3f")%(u),("kJ/kg")
# Variables
h_g1 = 2797.2; #kJ/kg
c_ps = 2.25;
T_sup = 350.; #0C
T_s = 212.4; #0C
# Calculations
h1 = h_g1+c_ps*(T_sup-T_s);
h_f2 = 908.6; #kJ/kg
h_fg2 = 1888.6; #kJ/kg
# Main:20 bar, 250 0C
T_sup = 250.; #0C
Q = 2*(h_g1+c_ps*(T_sup-T_s));
x2 = (Q-h1-h_f2)/h_fg2;
# Results
print ("Quality of steam %.3f")%(x2)
import math
# Variables
m = 1.; #kg
p = 6.; #bar
x = 0.8;
T_s = 473.; #K
h_fg = 2085.; #kJ/kg
c_pw = 4.18;
# Calculations
s_wet = c_pw*math.log(T_s/273)+x*h_fg/T_s;
# Results
print ("Entropy of wet steam = %.3f")%(s_wet),("kJ/kg.K")
# Variables
p1 = 10.; #bar
t_sup = 400.; #0C
p2 = 0.2; #bar
x2 = 0.9;
h_sup = 3263.9; #kJ/kg
s_sup = 7.465; #kJ/kg
h1 = 3263.9; #kJ/kg
s1 = s_sup;
h_f2 = 251.5; #kJ/kg
h_fg2 = 2358.4; #kJ/kg
s_f2 = 0.8321; #kJ/kg.K
s_g2 = 7.9094; #kJ/kg.K
# Calculations and Results
s_fg2 = s_g2-s_f2;
h2 = h_f2+x2*h_fg2;
s2 = s_f2+x2*s_fg2;
print ("(i) Drop in enthalpy")
dh = h1-h2;
print ("Drop in enthalpy = %.3f")%(dh),("kJ/kg")
print ("(ii) Change in entropy")
ds = s1-s2;
print ("Change in entropy = %.3f")%(ds),("kJ/kg.K")
import math
# Variables
m = 1.; #kg
p = 12.; #bar
T_sup = 523.; #K
c_ps = 2.1; #kJ/kg.K
T_s = 461.; #K
h_fg = 1984.3; #kJ/kg
c_pw = 4.18;
# Calculations
s_sup = c_pw*math.log(T_s/273)+h_fg/T_s+c_ps*math.log(T_sup/T_s);
# Results
print ("Entropy = %.3f")%(s_sup),("kJ/kg.K")
# Variables
m = 3.; #kg
v1 = 0.75; #m**3/kg
v2 = 1.2363; #m**3/kg
x = v1/v2;
h_f = 458.4; #kJ/kg
h_fg = 2231.9; #kJ/kg
h_s = m*(h_f+x*h_fg); #kJ
v_sup = 1.55; #m**3/kg
p = 2; #bar
t_s = 120.2; #0C
t_sup = 400; #0C
h = 3276.6; #kJ/kg
U = 1708.; #kJ/kg
# Calculations and Results
Degree = t_sup-t_s;
h_sup = m*h;
Q_added = h_sup - h_s;
print ("Heat added = %.3f")%(Q_added),("kJ")
U_s = m*U;
U_sup = m*(h-p*v_sup*10**2);
dU = U_sup - U_s;
W = Q_added - dU;
print ("work done = %.3f")%(W),("kJ")
# Variables
p = 5.; #bar
m = 50.; #kg
T1 = 20.; #0C
m_s = 3.; #kg
T2 = 40.; #0C
m_eq = 1.5; #kg
h_f = 640.1; #kJ/kg
h_fg = 2107.4; #kJ/kg
c_pw = 4.18;
# Calculations
m_w = m+m_eq;
x = ((m_w*c_pw*(T2-T1))/m_s + c_pw*T2 - h_f)/h_fg;
# Results
print ("Dryness fraction of steam %.3f")%(x)
# Variables
p = 1.1; #bar
x = 0.95;
c_pw = 4.18;
m1 = 90.; #kg
m2 = 5.25; #kg
T1 = 25.; #0C
T2 = 40.; #0C
# Calculations
m = m1+m2;
h_f = 428.8; #kJ/kg
h_fg = 2250.8; #kJ/kg
m_s = (m*c_pw*(T2-T1))/((h_f + x*h_fg) - c_pw*T2)
# Results
print ("Mass of steam condensed = %.3f")%(m_s),("kg")
# Variables
p1 = 8.; #bar
p2 = 1.; #bar
T_sup2 = 115.; #0C
T_s2 = 99.6; #0C
h_f1 = 720.9; #kJ/kg
h_fg1 = 2046.5; #kJ/kg
h_f2 = 417.5; #kJ/kg
h_fg2 = 2257.9; #kJ/kg
c_ps = 2.1;
# Calculations
x1 = (h_f2+h_fg2+c_ps*(T_sup2-T_s2)-h_f1)/h_fg1;
# Results
print ("Dryness fraction of the steam in the main = %.3f")%(x1)
# Variables
m_w = 2.; #kg
m_s = 20.5; #kg
t_sup = 110.; #0C
p1 = 12.; #bar
p3 = 1.; #bar
p2 = p1;
h_f2 = 798.4; #kJ/kg
h_fg2 = 1984.3; #kJ/kg
T_s = 99.6; #0C
h_f3 = 417.5; #kJ/kg
h_fg3 = 2257.9; #kJ/kg
T_sup = 110.; #0C
c_ps = 2.; #kJ/kg.K
# Calculations
x2 = (h_f3+h_fg3 + c_ps*(T_sup-T_s) - h_f2)/h_fg2;
x1 = x2*m_s/(m_w+m_s);
# Results
print ("Quality of steam supplied = %.3f")%(x1)
# Variables
p1 = 15.; #bar
p2 = p1;
p3 = 1.; #bar
t_sup3 = 150.; #0C
m_w = 0.5; #kg/min
m_s = 10.; #kg/min
h_f2 = 844.7; #kJ/kg
h_fg2 = 1945.2; #kJ/kg
h_sup3 = 2776.4; #kJ/kg
# Calculations
x2 = (h_sup3 - h_f2)/h_fg2;
x1 = x2*m_s/(m_s + m_w);
# Results
print ("Quality of steam supplied = %.3f")%(x1)