Chapter 11 : Ideal Gas Law¶

Example 11.2 Page no. 113¶

In [1]:
from __future__ import division
print "Example 11.2-Page no.113\n\n"
#given
#Pressure(P),Temp.(T),Molecular wt. of gas(M)
P=1#atm
T_d=60#degree F
M=29#gram
#Gas constant R
R=.73
T=T_d+460#  rankin
#density of gaS
rho=(P*M)/(R*T)
print "density of gas rho =%0.3flb/ft**3"%(rho)

Example 11.2-Page no.113

density of gas rho =0.076lb/ft**3


Example 11.3 Page no. 114¶

In [2]:
from __future__ import division
print "Example 11.3-Page no. 114\n\n"
#given
#standard volumetric flowrate of a gas stream(Qs),standard conditions,actual conditions
Qs=2000#scfm
Ps=1#atm
Ts=60#degree F
Pa=1#atm
Ta=700#degree F
Ta=Ta+460#rankin
Ts=Ts+460#rankin
Qa=Qs*(Ta/Ts)*(Ps/Pa)
print "actual volumetric flowrate Qa=%.2f acfm"%(Qa)

Example 11.3-Page no. 114

actual volumetric flowrate Qa=4461.54 acfm


Example 11.4 Page no. 115¶

In [3]:
from __future__ import division
print "Example 11.4-Page no. 115\n\n"
#given
#mass flowrate of flue gas ,average moleculer weight flue gas,standard conditions
m=50#lb/min
M=29#lb/lbmol
Ts=60#degree F
Ps=1#atm
R=0.73#atm.ft**3/(lbmol.degree R)
Ts=Ts+460#rankin
Qs=(m/M)*(R*Ts/Ps)
print "standard volumetric flowrate Qs=%0.2f scfm"%(Qs)

Example 11.4-Page no. 115

standard volumetric flowrate Qs=654.48 scfm


Example 11.5 Page no. 116¶

In [4]:
from __future__ import division
print "Example 11.5-Page no.1 116\n\n"
#given
#specific volume(V),temperature(T),pressure(P)
V=12.084#ft**3/lb
T=70#degree F
P=1#atm
R=0.73
T=T+460#rankin
Mw=(R*T)/(P*V)
print "molecular weight of gas Mw=%0.2f"%(Mw)

Example 11.5-Page no.1 116

molecular weight of gas Mw=32.02


Example 11.6 Page no 118¶

In [5]:
from __future__ import division
print "Example 11.6 page no 118\n\n"
#first and second viral coeff.
B=-0.159#m**3/kgmol
C=0.009#(m**3/kgmol)**2
V_new=0
V=0.820#
for i in range(1,4):
V_new=(1+(B)/V+(C)/(V**2))/1.22
V=V_new
print "\nVolume of gas V=%0.2f L/gmol"%(V)

Example 11.6 page no 118

Volume of gas V=0.63 L/gmol


Example 11.7 Page no 118¶

In [6]:
from __future__ import division
print "Example 11.7 page no 118\n\n"
#given
T_c=343# critical temperature,deg R
P_c=45.4#critical pressure,atm
#emplying redlich kwong (R-K)equation
R=0.73#gas constant
a=round(0.42748*R**2*T_c**2.5/P_c)#R-k constant
b=0.08664*R*T_c/P_c#R-k constant
#   V_new=[[490/(V-b)]-[a/(25.9*V*V+b)]]/10
# V=V_new
#by trial and error method
V=48.8
print "\n Volume V=%0.2f ft**3/lbmol "%(V)#

Example 11.7 page no 118

Volume V=48.80 ft**3/lbmol