In [1]:

```
import math
#Variable Decleration
V_1=250 #Velocity in m/s
c_p=1.005 #Constant Pressure specific heat in kJ/kg.K
k=1.4 #Specific heat ratio
T1=255.7 #
C=10**-3 #COnversion factor
P1=54.05 #Atmospheric Pressure in kPa
SPR=8 #Stagnation pressure ratio
#Calculations
#Part(a)
T_01=T1+((V_1**2/(2*c_p))*C) #Stagnation temperature in K
P_01=P1*((T_01/T1)**(k/(k-1))) #Stagnation Pressure in kPa
#Part(b)
T_02=T_01*((SPR)**((k-1)/k)) #Stagnation Temperature at compressor exit in K
Win=c_p*(T_02-T_01) #Work per unit mass of air in kJ/kg
#Result
print "The stagnation pressure is",round(P_01,2),"kPa"
print "The required compressor work per unit mass is",round(Win,1),"kJ/kg"
```

In [29]:

```
import math
#Variable Decleration
cp=0.846 #Specific Heat in kJ/kg.K
k=1.289 #Specific heat ratio
R=0.1889 #gas constant for Carbon dioxide in kJ/kg.K
T_0=473 #Temperature in K
P0=1.4*10**3 #Pressure in kPa
P=1.2*10**3 #Pressure in kPa
m_dot=3 #Mass flow rate in kg/s
#Calcualtions
x=((k-1)/k)
b=float(P/P0)
T=T_0*((b)**x) #Temperature where pressure is P in K
V=(2*cp*(T0-T)*10**3)**0.5 #Velocity in m/s
#Using The Ideal Gas relation
rho=P/(R*T) #Density of the fluid in kg/m^3
#Using the mass flow rate relation
A=m_dot/(rho*V) #Area in m^2
c=(k*R*T*10**3)**0.5 #speed of sound in m/s
#Mach Number
Ma=V/c #Mach's Number
#Result
print "Similarly we can compute data for other pressures as well"
print "The denisty of air is",round(rho,5),"kg/m^3"
print "The area is",A,"m^2"
print "The speed of sound is",round(c,2),"m/s"
print "The Mach Number is",round(Ma,3)
```

In [30]:

```
import math
#Variable Decleration
k=1.289 #Specific Heat Ratio
To=473 #Stagnation temperature in K
Po=1400 #Stagnation pressure in kPa
#Calculations
#Notation has been changed for simplicity of computation
T_ratio=2/(k+1) #ratio of T star to To
P_ratio=(2/(k+1))**(k/(k-1)) #Ratio of P star to Po
T_star=T_ratio*To #Critical Temperature in K
P_star=P_ratio*Po #Critical Pressure in kPa
#Result
print "the critical temperature and pressrue are",round(T_star),"K and",round(P_star),"kPa"
```

In [53]:

```
import math
#Variable decleration
Vi=150 #Velocity at the inlet in m/s
cp=1.005 #Specific heat in kJ/Kg.K
k=1.4 #Specific heat ratio
Ti=873 #Temperature at the inlet in K
Pi=1 #Pressure at the inlet in Mpa
Pb1=0.7 #Back pressure in part a in Mpa
Pb2=0.4 #Back pressure in part b in Mpa
R=0.287 #Gas Constant in kPa.m^3/kg.K
At=50*10**-4 #Area in m^2
#Values taken from the table
P_ratio=0.67 #Presure ratio
T_ratio=0.892 #Temperature ratio
Mat=0.778 #Mach Number
#Calculations
Toi=Ti+((Vi**2/(2*cp))*10**-3) #Stagnation Temperature in K
Poi=Pi*((Toi/Ti)**(k/(k-1))) #Stagnation Presure in mPa
#Stagnation pressure and temperature values remain constant throughout
#Part(A)
#Notation will be changed to avoid computational complexicity
BPR1=Pb1/Poi #Back Pressure ratio
Tt=T_ratio*Toi #Temperature in K
rhot=(Pb1*10**3)/(R*Tt) #Density in kg/m^3
Vt=Mat*((k*R*Tt*10**3)**0.5) #Velocity in m/s
m_dot1=rhot*At*Vt #Mass flow rate in kg/s
#Part(B)
#Notation will be changed
BPR2=Pb2/Poi #Back pressure ratio
m_dot2=(At*Poi*10**3)*((k/(Toi*R))**0.5)*((2/(k+1))**((k+1)/(2*(k-1))))*1000**0.5 #mass flow rate in kg/s
#Result
print "The mass flow rate at the nozzle is",round(m_dot1,2),"kg/s"
print "The mass flow rate through the nozzleis calculated to be",round(m_dot2,2),"kg/s"
```

In [63]:

```
import math
#Variable Decleration
Pgauge=220 #Gauge Pressure in the tire in kPa
Patm=94 #Atmospheric Pressure in kPa
R=0.287 #Gas Constant in kPa.m^3/kg.K
k=1.4 #Specific heat ratio
T=298 #Temperature in K
D=0.004 #Diamter in m
#Calculations
P=Pgauge+Patm #Absolute Pressure in the tre in kPa
#Critical Presure in the tire from table
Pstar=round(0.5283*P) #Critical Presure in kPa
#Flow is choked
rho0=P/(R*T) #Denisty of the fluid in kg/m^3
rho_star=rho0*((2/(k+1))**(1/(k-1))) #Critical Density in kg/m^3
T_star=(2/(k+1))*T #Critical Temperature in K
V=(k*R*T_star*1000)**0.5 #Velocity in m/s
m_dot=rho_star*((pi*D**2)/4)*V #mass flow rate in kg/s
#Result
print "The initial mass flow rate is",round(m_dot,5),"kg/s"
```

In [69]:

```
import math
#Variable Decleration
k=1.4 #Specific Heat ratio
R=0.287 #Gas Constant in kJ/kg.K
Ma=2 #Mach Number
A=20*10**-4 #Throat Area in m^2
P0=1000 #Pressure in kPa
T0=800 #Temperature in K
#Calculations
rho0=P0/(R*T0) #Density of the fluid in kg/m^3
#Part(a) When Ma=1
#Notation has been changed
#Taking values from the table
P_ratio=0.5283 #Pressure ratio
T_ratio=0.8333 #Temperature Ratio
rho_ratio=0.6339 #Density Ratio
#Thus
P_star=P_ratio*P0 #Critical Pressure in kPa
T_star=T_ratio*T0 #Critical Temperature in K
rho_star=rho_ratio*rho0 #Critical Denisty in kg/m^3
V_star=(k*R*T_star*1000)**0.5 #Critical Velocity in m/s
#Part(b) When Ma=2
P_ratio2=0.1278 #Pressure ratio in part b
T_ratio2=0.5556 #Temperature ratio in part b
rho_ratio2=0.23 #Density ratio in part b
Ma_star=1.633 #Critical Mach Number
A_ratio=1.6875 #Area ratio in part b
#Thus
Pe=P_ratio2*P0 #Pressure at the exit plane in kPa
Te=T_ratio2*T0 #Temperature at the exit plane in K
rho_e=rho_ratio2*rho0 #Density at the exit plane in kg/m^3
Ae=A_ratio*A #Area at the exit plane in m^2
Ve=Ma_star*V_star #Velocity at the exit plane in m/s
#Part(c)
m_dot=rho_star*A*V_star #Mass flow rate in kg/s
#Result
print "The throat conditions are as follows"
print "P*=",round(P_star),"kPa","T*=",round(T_star,1),"K","rho*=",round(rho_star,3),"kg/m^3"
print "The exit plane conditions are as follows"
print "Pe=",round(Pe),"kPa","Te=",round(Te,1),"K","rho_e=",round(rho_e,3),"kg/m^3"
print "Ae=",Ae,"m^2"
print "The mass flow rate is",round(m_dot,2),"kg/s"
```

In [77]:

```
import math
#NOTE:The variable names have been changed
#Variable Decleration
k=1.4 #Specific Heat ratio
R=0.287 #gas Constant in kJ/kg.K
cp=1.005 #Specfic heat at constant pressure in kJ/kg.K
#Table Values
P01=1 #pressure in MPa
P1=0.1278 #Pressure in MPa
T1=444.5 #Temperature in K
rho1=1.002 #Denisty in kg/m^3
Ma1=2 #Mach Number
Ma2=0.5774 #Mach Number
Po_ratio=0.7209 #Presure ratio
P_ratio=4.5 #Pressure ratio
T_ratio=1.6875 #Temperature Ratio
rho_ratio=2.6667 #Density Ratio
A=20*10**-4 #Area in m^2
#Calculations
#Part(a)
P02=Po_ratio*P01 #Stagnation Pressure after the shockwave in MPa
P2=P1*P_ratio #Static Pressure after the shockwave in MPa
T2=T_ratio*T1 #Temperature after the shockwave in K
rho2=rho_ratio*rho1 #Denisty after the shockwave in kg/m^3
#Part(b)
e_change=cp*(np.log(T2/T1))-(R*np.log(P2/P1)) #Entropy change across the shock in kJ/kg.K
#Part(c)
V2=Ma2*(k*R*T2*1000)**0.5 #Velocity in m/s
#Part(d)
#Same as example 12-6 above
m_dot=2.86 #Mass Flow rate in kg/s
#Result
print "The Following are the values"
print "Stagnation Pressure",round(P02,3),"MPa"
print "Static Pressure",round(P2,3),"MPa"
print "Static Temperature",round(T2,1),"K"
print "Static Denisty",round(rho2,2),"kg/m^3"
print "The entropy change is",round(e_change,5),"kJ/kg.K"
print "The exit velocity is",round(V2),"m/s"
print "The mass flow rate is",round(m_dot,3),"kg/s"
```

In [81]:

```
import math
#Variable Decleration
u=19 #angle of Mach lines in Degrees
#Calculations
Ma1=1/(sin((u*pi)/180)) #Mach Number
#Result
print "The Mach Number is",round(Ma1,2)
```

In [85]:

```
import math
#NOTE:Some Variable names have been changed
#Variable Decleration
Ma1=2 #Mach Number
k=1.4 #Specific heat ratio
theta=10 #Deflection in degrees
beta_weak=39.3 #Oblique shock angle in degrees
beta_strong=83.7 #Oblique shock angle in degrees
P1=75 #Pressure in kPa
Ma2_n_w=0.8032 #Mach Number on Downstream side
Ma2_n_s=0.5794 #Mach Number on Downstream Side
#Calculations
#Weak shock
Ma1_n_w=Ma1*sin((beta_weak*pi)/180) #Mach Number
#Strong Shock
Ma1_n_s=Ma1*sin((beta_strong*pi)/180) #Mach Number
#Pressure Calculations
#Weak Shock
P2_w=((2*k*(Ma1_n_w**2)-k+1)/(k+1))*P1 #Pressure in kPa
#Strong Shock
P2_s=((2*k*(Ma1_n_s**2)-k+1)/(k+1))*P1 #Pressure in kPa
Ma2_w=Ma2_n_w/sin(((beta_weak-theta)*pi)/180) #Mach NUmber on the downstream side
Ma2_s=Ma2_n_s/sin(((beta_strong-theta)*pi)/180) #Mach NUmber on the downstream side
#Result
print "The Mach number on the downstream side of the oblique shock are"
print "Ma in weak shock",round(Ma2_w,3),"Ma in strong shock",round(Ma2_s,3)
```

In [128]:

```
import math
#Variable Decleration
Ma1=2 #Mach Number
P1=230 #Pressure in kPa
k=1.4 #Specific Heat ratio
theta=10 #Degrees
Ma2=2.38 #Mach Number
#Calculations
#Simplfying the calculation
a=((k+1)/(k-1))**0.5
b=((Ma1**2)-1)**0.5
c=((k-1)/(k+1))**0.5
d=arctan(b)*180*pi**-1
e=arctan(c*b)*180*pi**-1
vMa1=a*e-d #Upstream Prandtl-Meyer Function in degrees
vMa2=theta+vMa1 #Degrees
#Pressure Calculations
#Simplifying Calculations
a1=(k-1)*0.5
b1=k/(k-1)
f=(1+a1*Ma2**2)**(-b1)
g=(1+a1*Ma1**2)**(-b1)
P2=P1*(f/g) #Pressure in kPa
#Result
print "The Mach Number on the Downstream Side is",round(Ma2,2)
print "The Pressure at the downstream side is",round(P2),"kPa"
#The answer in the textbook has not been rounded and hence differes
```

In [3]:

```
import math
#Variable Decleration
k=1.4 #Specific Heat Ratio
cp=1.005 #Specific Heat in kJ/kg.K
R=0.287 #Gas COnstant in kJ/kg.K
P1=480 #Pressure in kPa
T1=550 #Temperature in K
D=0.15 #Diameter in m
AF=40 #Air-Fuel mass ratio
HV=42000 #Heating Value in kJ/kg
V=80 #Velocity in m/s
#Values from Tables
T_ratio=0.1291 #Temperature ratio
T_ratio1=0.1541 #Temperature Ratio
P_ratio1=2.3065 #Pressure ratio
V_ratio1=0.0668 #Velocity Ratio
T_ratio2=0.4389 #Temperature Ratio
P_ratio2=2.1086 #Pressure Ratio
V_ratio2=0.2082 #Velocity ratio
#Calculations
rho1=P1/(R*T1) #Density in kg/m^3
A1=(pi*D**2)/4 #Area in m^2
m_dot_air=rho1*A1*V #Mass flow rate of air in kg/s
m_dot_fuel=m_dot_air/AF #Mass flow rate of the fuel in kg/s
Q_dot=m_dot_fuel*HV #Heat in kW
q=Q_dot/m_dot_air #HEat Transfer rate in kJ/kg
#Stagnation Temperature and Mach Number at INLET
T01=T1+(V**2/(2*cp))*10**-3 #Stagnation Temperature in K
c1=(k*R*T1*1000)**0.5 #Speed in m/s
Ma1=V/c1 #Mach Number
#EXIT stagnation Temperature and Mach Number
T02=T01+(q/cp) #Stagnation Temperature in K
T0_star=T01/T_ratio #Critical Temperature in K
#Value for Ma2 is taken form the table corresponding to the Temperature ratio given below
T_rat=T02/T0_star #Temperature Ratio
Ma2=0.314 #Mach Number
#Exit Values
T2=T1*(T_ratio2/T_ratio1) #Temperature in K
P2=P1*(P_ratio2/P_ratio1) #Pressure in kPa
V2=V*(V_ratio2/V_ratio1) #Velocity in m/s
#Result
print "The Temperature at the exit is",round(T2),"K"
print "The pressure at the exit is",round(P2),"kPa"
print "The velocity at the exit is",round(V2),"m/s"
#The answer for temperature in tetbook is incorrect
```

In [5]:

```
import math
#Varialble Decleration
k=1.4 #Specific Heat ratio
cp=1.005 #Specific Heat in kJ/kg.K
R=0.287 #Gas Constant in kJ/kg.K
v=1.58*10**-5 #Kinematic Viscosity in m^2/s
P1=150 #Pressure in kPa
T1=300 #Temperature in K
Ma1=0.4 #Mach Number
D=0.03 #Diameter in m
f=0.0148 #Friction factor
#Values from tables
P_ratio1=1.5901
T_ratio1=1.1628
P_ratio2=2.6958
V_ratio=0.4313
fL1_D=2.3085
#Calculations
c1=(k*R*T1*1000)**0.5 #Inlet Velocity in m/s
V1=Ma1*c1 #Velocity in m/s
Re1=(V1*D)/v #Reynolds Number
L1_star=(fL1_D*D)/f #Duct Length in m
T_star=T1/T_ratio1 #Temperature in K
P_star=P1/P_ratio2 #Pressure in kPa
V_star=V1/V_ratio #Velocity in m/s
fraction=1-(1/P_ratio1) #Fraction of the inlet stagnation pressure lost
#Result
print "The duct length is",round(L1_star,2),"m"
print "The Temperature is",round(T_star),"K"
print "The Pressure is",round(P_star,1),"kPa"
print "The Velocity is",round(V_star),"m/s"
print round(fraction,3),"Fraction of the total stagnation pressure is lost in the duct"
```

In [16]:

```
import math
#Variable Decleration
k=1.4 #Specific Heat ratio
cp=1.005 #Specific Heat in kJ/kg.K
R=0.287 #Gas Constant in kJ/kg.K
V1=85 #Velocity in m/s
P1=220 #Pressure in kPa
T1=450 #Temperature in K
f=0.023 #Friction factor
L=27 #Length in m
D=0.05 #Diameter in m
#Value from table
fl_D=14.5333
#Calculations
c1=(k*R*T1*1000)**0.5 #Velocity in m/s
Ma1=V1/c1 #Mach Number
#Notation has been changed
fL_D1=(f*L)/D #Function
fL_D2=fl_D-fL_D1 #Function
#Mach NUmber corresponding to this value is 0.42
Ma2=0.420 #Mach Number
rho1=P1/(R*T1) #Density of the fluid in kg/m^3
A1=(pi*D**2)/4 #Area in m^2
m_air=rho1*V1*A1 #Mass flow rate in kg/s
#Discussion Calculations
L_max1=(fl_D*D)/f #MAx Duct length in m
L_max2=(fL_D2*D)/f #Max Duct length in m
#Result
print "The Mach Number is",round(Ma2,3)
print "The mass flow rate is",round(m_air,3),"kg/s"
print "The max length at inlet is",round(L_max1,1),"m"
print "The max length at exit is",round(L_max2,1),"m"
```