In [1]:

```
# Variables
P = 8820.*1000
N = 600./60
H = 500.
Cv = 0.97
Cu = 0.46
no = 0.85
w = 9810.
g = 9.81
# Calculations
Q = P/(no*w*H)
V1 = Cv*((2*g*H)**0.5)
u = Cu*V1
D = u/(3.142*N)
d = D/15
a = 3.142*d*d/4
n = Q/(a*V1)
n1 = round(n+1)
# Results
print "discharge in m3/sec,wheel diameter in m, jet diameter in cm, number os jets ",round(Q,6),round(D,4),round(d*100,2),n1
```

In [3]:

```
import math
# Variables
H = 46.
Q = 1.
u1 = 15.
y = 165.
y2 = 180-y
Cv = 0.975
g = 9.81
# Calculations
V1 = ((2*g*H)**0.5)
Vw1 = V1
Vr1 = V1-u1
Vr2 = Vr1
Vw2 = (Vr2*(math.cos(math.radians(y2))))-u1
w = 9810.
P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
n = P*1000/(w*Q*H)
# Results
print "power developed in Kw and efficiency of the wheel",round(P,3),round((n*100),3)
```

In [4]:

```
import math
# Variables
H = 340.
P = 4410.*1000
N = 500./60
Cv = 0.97
no = 0.86
w = 9810.
g = 9.81
# Calculations
Q = P/(w*H*no)
V1 = Cv*(math.sqrt(2*g*H))
u = 0.45*V1
D = u/(3.142*N)
a = Q/V1
# Results
print "mean diameter in m,jet area in m2",round(D,4),round(a,7)
```

In [4]:

```
import math
# Variables
H = 45.
Q = 50./60
u1 = 12.5
y = 160.
y2 = 180.-y
Cv = 0.97
g = 9.81
# Calculations and Results
V1 = Cv*((2*g*H)**0.5)
Vw1 = V1
Vr1 = V1-u1
Vr2 = Vr1
Vw2 = Vr2*(math.cos(math.radians(y2)))-u1
w = 9810
P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
nh = (2*u1*(Vw1+Vw2))/(V1*V1)
print "power developed in Kw and hydraulic efficiency",P,nh*100
H1 = 50
V11 = Cv*((2*g*H1)**0.5)
Vw11 = V11
Vr11 = V11-u1
Vr21 = Vr11
Vw21 = Vr21*(math.cos(math.radians(y2)))-u1
w = 9810
P = (w*Q*(Vw11+Vw21)*u1)/(g*1000)
print "Power developed in Kw if head is increased to 50",P
```

In [5]:

```
import math
# Variables
H = 50.
Q = 1.2
u1 = 18.
y = 160.
y2 = 180-y
Cv = 0.94
g = 9.81
# Calculations
V1 = Cv*((2*g*H)**0.5)
Vw1 = V1
Vr1 = V1-u1
Vr2 = Vr1
Vw2 = Vr2*(math.cos(math.radians(y2)))-u1
w = 9810
P = (w*Q*(Vw1+Vw2)*u1)/(g*1000)
n = P*1000/(w*Q*H)
# Results
print "power developed in Kw and efficiency of the wheel",P,n*100
```

In [2]:

```
import math
# Variables
D = 1.
N = 1000./60
H = 700.
y = 165.
y2 = 180-y
Q = 0.1
Cv = 0.97
g = 9.81
# Calculations
u = D*math.pi*N
V1 = Cv*(math.sqrt(2*g*H))
nh = (2*u*(V1-u)*(1+(math.cos(math.radians(y2)))))/(V1*V1)
# Results
print "hydraulic efficiency of the wheel",round((nh*100),2),"%"
# note : rounding off error
```

In [7]:

```
import math
# Variables
Hg = 500.
hf = Hg/3
H = Hg-hf
Q = 2.
y = 165.
y2 = 180.-y
g = 9.81
w = 9810.
Cv = 1.
# Calculations
V1 = Cv*(math.sqrt(2*g*H))
u = 0.45*V1
Vr1 = V1-u
Vw1 = V1
Vr2 = Vr1
Vw2 = (Vr2*(math.cos(math.radians(y2))))-u
W = w*Q*(Vw1+Vw2)*u/g
P = W/1000
nh = 2*u*(Vw1+Vw2)/(V1*V1)
# Results
print "power given by the water to the runner in Kw : %.3f \
\nHydraulic efficiency %.2f"%(P,(nh*100)),"%"
# note : rounding off error
```

In [11]:

```
import math
# Variables
L = 1600.
H = 550.
Dp = 1.2
d = 0.18
f = 0.006
Cv = 0.97
g = 9.81
# Calculations
V1 = Cv*(math.sqrt(2*g*H))
a = math.pi*d*d/4
Q = a*V1
w = 9810
P = (w*Q*V1*V1)/(2*g*1000)
ap = math.pi*Dp*Dp/4
Vp = Q/ap
Hf = (4*f*L*Vp*Vp)/(Dp*2*g)
Tp = 4*w*Q*(H+Hf)/1000
# Results
print "power to each jet in Kw : %.1f \
\ntotal power at reserviour i Kw : %.2f"%(P,Tp)
# note : rounding off error.
```

In [12]:

```
import math
# Variables
Q = 4.
H = 250.
L = 3000.
n1 = 4.
n = 0.91
nh = 0.9
Cv = 0.975
f4 = 0.0045
# Calculations
hf = H-H*n
Hn = H-hf
g = 9.81
w = 9810
V1 = Cv*(math.sqrt(2*g*Hn))
Pw = w*Q*V1*V1/(2*g*1000)
Pt = nh*Pw
q = Q/n1
d = math.sqrt(4*q/(3.142*V1))
D = ((f4*L*16*16)/(2*g*3.142*3.142*hf))**0.2
# Results
print "power developed by turbine in Kw : %.1f \
\ndiameter jet and diameter of pipeline"%(Pt),round(d,4),round(D,4)
```

In [ ]:

```
```