import math
# Variables
D1 = 0.6
D2 = 0.3
x2 = 90.
B1 = 0.15
N = 300./60
x1 = 15.
Vf1 = 3.
# Calculations
Vf2 = Vf1
u1 = math.pi*D1*N
u2 = math.pi*D2*N
Vw1 = Vf1/math.tan(math.radians(x1))
y1 = math.tan(math.radians(Vf1/(Vw1-u1)))
Q = math.pi*D1*B1*Vf1
w = 9810
g = 9.81
P = w*Q*Vw1*u1/(g*1000)
# Results
print "blade angles, Power developed in Kw",round(y1,4),round(P,4)
# Variables
D1 = 1.
N = 200./60
B1 = 0.15
Vf1 = 3.
Vf2 = Vf1
x2 = 90.
# Calculations
Q = 3.142*D1*B1*Vf1
u1 = 3.142*D1*N
Vw1 = u1
w = 9810
g = 9.81
P = (w*Q*Vw1*u1)/(g*1000)
H = (Vw1*u1/g)+(Vf2*Vf2/(2*g))
nh = Vw1*u1/(g*H)
# Results
print "power developed in Kw,hydraulic efficiency",round(P,3),round((nh*100),0),"%"
import math
# Variables
D1 = 0.75
D2 = 0.5
x1 = 20.
Vf1 = 3.
Vf2 = 3.
B1 = 0.15
N = 250./60
# Calculations
u1 = math.pi*D1*N
u2 = math.pi*D2*N
Vw1 = Vf1/math.tan(math.radians(x1))
y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))
y2 = math.degrees(math.atan(Vf2/u2))
Q = 3.142*D1*B1*Vf1
w = 9810
g = 9.81
P = w*Q*Vw1*u1/(g*1000)
H = (Vw1*u1/g)+(Vf2*Vf2/(2*g))
nh = Vw1*u1/(g*H)
# Results
print "hydraulic efficiency : %.2f %% \
\npower developed in Kw : %.2f \
\nblade angle at inlet and outlet : %.3f and %.3f"%(nh*100,P,y1,y2)
# note : rounding off error.
import math
# Variables
H = 150.
Q = 6.
N = 400./60
D1 = 1.2
x1 = 20.
x2 = 90.
B1 = 0.1
# Calculations
u1 = math.pi*D1*N
Vf1 = Q/(math.pi*D1*B1)
Vw1 = Vf1/math.tan(math.radians(x1))
Vw2 = 0
w = 9810
g = 9.81
P = w*Q*Vw1*u1/(g*1000)
# Results
print "whirl component at inlet and outlet m/s : %.5f and %d \
\npower developed in Kw : %.4f"%(round(Vw1,5),Vw2,round(P,4))
import math
# Variables
D1 = 0.76
D2 = 0.5
x1 = 20.
Vf1 = 4.
Vf2 = Vf1
B1 = 0.15
N = 300./60
# Calculations
u1 = math.pi*D1*N
u2 = math.pi*D2*N
Vw1 = Vf1/math.tan(math.radians(x1))
y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))
y2 = math.degrees(math.atan(Vf2/u2))
Q = 3.142*D1*B1*Vf1
w = 9810.
g = 9.81
P = w*Q*Vw1*u1/(g*1000)
# Results
print "blade angle at inlet and outlet : %.2f and %.2f \
\npower developed in Kw : %.2f"%(y1,y2,P)
import math
# Variables
no = 0.8
P = 147.*1000
H = 10.
g = 9.81
# Calculations
u1 = 0.95*(math.sqrt(2*g*H))
Vf1 = 0.3*(math.sqrt(2*g*H))
N = 160./60
Vw2 = 0
nh = (H-(0.2*H))/H
Vw1 = nh*g*H/u1
x1 = math.degrees(math.atan(Vf1/Vw1))
y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))
D1 = u1/(math.pi*N)
w = 9810.
p = 147.*1000
Q = p/(w*H*no)
B1 = Q/(math.pi*D1*Vf1)
# Results
print "guide blade angle : %.4f degrees \
\nwheel vane angle : %.4f degrees \
\ndiameter of wheel : %.7f m**3/s \
\nwidth of wheel at inlet in cm : %.2f"%(x1,y1,D1,B1*100)
# note : rounding off error.
import math
# Variables
sp = 25.*(10**6)
H = 40.
no = 0.9
P = 25.*1000
g = 9.81
# Calculations
u1 = 2*(math.sqrt(2*g*H))
Vf1 = 0.6*(math.sqrt(2*g*H))
w = 9810
Q = sp/(w*no*H)
De = (Q*4/(math.pi*Vf1*(1-(0.35**2))))**0.5
Db = 0.35*De
N = u1*60/(math.pi*De)
Ns = N*(P**0.5)/(H**1.25)
# Results
print "diameter of runner and boss : %.4f and %.4f m \
\nspeed and specific speed of runner in r.p.m : %.2f and %.2f "%(De,Db,N,Ns)
# note: rounding off error.
import math
# Variables
D = 4.5
d = 2.
P = 20608.
N = 140./60
H = 22.
nh = 0.94
w = 9810.
g = 9.81
no = 0.85
# Calculations
Q = P*1000/(w*no*H)
Vf1 = Q*4/(math.pi*((D**2)-(d**2)))
u1 = math.pi*D*N
Vw1 = nh*g*H/u1
x1 = math.degrees(math.atan(Vf1/Vw1))
# Results
print "discharge through the turbine : %.4f m**3/s \
\nguide blade angle at inlet : %d degrees"%(Q,x1)