# Variables
V = 25. #m/s velocity
F = 300. # N
g = 9.81
p = 1000.
# Calculations
w = g*p
A = (F*g)/(w*V*V)
V1 = 35
F1 = (w*A*V1*V1)/(g)
# Results
print "force in N on the plate if the velocity of the jet is increased to 35 m/sec",F1
import math
# Variables
d = 0.05 # mm water
V = 15. #m/s velocity
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
a = math.pi*d*d/4
F = (w*a*V*V)/g
u = 5
F1 = (w*a*((V-u)**2))/g
# Results
print "force in N on plate if plate is stationary",round(F,3),"N"
print "force in N on plate if plate is moving in the direction of the jet",round(F1,2),"N"
import math
# Variables
d = 0.03 #m diameter
Fx = 900 # N
x = 30. #degree angle
g = 9.81
w = g*1000
a = 3.142*d*d/4
# Calculations
V = ((Fx*g)/(w*a*math.sin(math.radians(x))*math.sin(math.radians(x))))**0.5
Q = a*V
# Results
print "rate of flow in m3/sec",round((Q*1000),2)
import math
# Variables
d = 0.02 #m diameter
V = 20. #m/s, velocity
x = 15. #degree angle
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
a = math.pi*d*d/4
W = (w*a*V*V)/(g*math.sin(math.radians(x)))
F1 = (w*a*V*V)/(2*g)
# Results
print "weight of the plate in N",round(W,3),"N"
print "force in N required at the lower edge of the plate : %.4f"%F1,"N"
import math
# Variables
d = 0.05 #m diameter
V = 20. #m/s velocity
y = 120. #degree angle
x = 180.-y
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
a = math.pi*d*d/4
F = (w*a*V*V*(1+math.cos(math.radians(x))))/(g)
# Results
print "force in N exerted by the water jet %.4f"%F,"N"
import math
# Variables
d = 0.05 #m diameter
V = 20. #m velocity
u = 7. #m/s
a = math.pi*d*d/4
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
F = (w*a*V*V)/g
F1 = (w*a*((V-u)**2))/g
work = F1*u
# Results
print "force in N if plate is fixed ",F
print "force in N if plate is moving with a velocity of 7 m/sec",round(F1,2)
print "work done per sec by the jet",round(work,3)
# note : rounding off error.
import math
# Variables
W = 58.86 #N weighing
d = 0.02 #m diameter
V = 5. #m/s velocity
z = 0.15 #m axis
g = 9.81
p1 = 1000.
w = g*p1
# Calculations
a = math.pi*d*d/4
F = (w*a*V*V)/g
cog = 0.1
x = 30
P = (F*z)/cog
F1 = ((P*cog*(math.cos(math.radians(x))))+(W*cog*(math.sin(math.radians(x)))))
V1 = ((F1*g)/(w*a))**0.5
# Results
print "velocity in m/sec of the jet if the plate is deflected through 30 degree",round(V1,2)
import math
# Variables
V = 25. #m velocity
u = 10. #m velocity
q = 0.001 #m**3/s
g = 9.81
p1 = 1000.
w = g*p1
x = 180. #degree
u1 = 8. #m velocity
# Calculations
F1 = (w*q/g)*V*(1-math.cos(math.radians(x)))
F2 = (w*q*((V-u)**2)*(1-math.cos(math.radians(x))))/(g*V)
F3 = (w*q*(V-u1)*(1-math.cos(math.radians(x))))/g
# Results
print "force of jet in N when,the cup is stationary,the cup is moving with velocity of 10m/sec,series of cup with velocity of 8m/sec" ,\
F1,F2,F3
import math
# Variables
x1 = 30. #m/s velocity
V1 = 30. #degree
Q = 0.001
g = 9.81
w = g*1000.
Vf1 = V1*math.sin(math.radians(x1))
Vw1 = V1*math.cos(math.radians(x1))
u = 15.
x2 = 120.
y1 = math.degrees(math.atan(Vf1/(Vw1-u)))
Vr1 = ((Vf1*Vf1)+((Vw1-u)**2))**0.5
z = u*math.sin(math.radians(x2))/Vr1
y2 = 60-math.degrees(math.asin(z))
V2 = Vr1*math.sin(math.radians(y2))/math.sin(math.radians(x2))
Vw2 = V2*math.cos(math.radians(x2/2))
W = (w*Q*(Vw1+Vw2)*u)/g
n = W*2/(V1*V1)
print "angle of vane : %.3f degrees \
\nwork done of water entering the vane : %.3f Nm/s \
\nefficiency : %.2f %%"%(y2,W,n*100)
import math
# Variables
Q = 0.283 #m**3/s, flow of water
d = 0.05 #m diameter
x = 170. #angle
u = 48. #m/s velocity
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
a = math.pi*d*d/4
V1 = Q/a
Vw1 = V1
Vr1 = V1-u
x1 = 0
Vr2 = Vr1
Vw2 = (Vr2*math.cos(math.radians(180-x)))-u
Fx = (w*a*(V1-u)*(Vw1+Vw2))/g
P = Fx*u/1000
n = (P*1000*g*2)/(w*Q*V1*V1)
# Results
print "force exerted by the jet : %.3f N \
\npower developed by the vane : %.4f kW \
\nefficiency : %.1f %%"%(Fx,P,(n*100))
import math
# Variables
y1 = 30. #angle
y2 = 15. #angle
a = 13.*(10**-4) #cm**2
x1 = 15. #incline
V1 = 60. #m/s area moving
# Calculations
Vf1 = V1*math.sin(math.radians(y2))
Vw1 = V1*math.cos(math.radians(y2))
u = Vw1-(Vf1/math.tan(math.radians(y1)))
Vw2 = u-(Vf1*math.cos(math.radians(y2))/math.sin(math.radians(y1)))
Vf2 = (u-Vw2)*math.tan(math.radians(y2))
V2 = (Vf2*Vf2+Vw2*Vw2)**0.5
x2 = math.degrees(math.atan(Vf2/Vw2))
g = 9.81
p1 = 1000
w = g*p1
Fx = (w*a*V1*(Vw1-Vw2))/g
Fy = (w*a*V1*(V1*math.sin(math.radians(y2))-V2*math.sin(math.radians(x2))))/g
Fr = (Fx*Fx+Fy*Fy)**0.5
o = math.degrees(math.atan(Fy/Fx))
# Results
print "velocity of the vane : %.4f m/s \
\ndirection of velocity at exit : %.4f m/s \
\nresultant force : %.4f N \
\nangle between forces : %.1f degrees"%(u,V2,Fr,o)
import math
# Variables
V1 = 13. # m/s
y1 = 30.
y2 = y1
u = 4.5 # m/s
g = 9.81
p1 = 1000.
# Calculations
w = g*p1
Q = 0.001
x1 = math.degrees(math.acos(0.9394))
Vw1 = V1*math.cos(math.radians(x1))
Vr1 = (Vw1-u)/math.cos(math.radians(y1))
Vw2 = Vr1*math.cos(math.radians(y1))-u
Vf2 = Vr1*math.sin(math.radians(y1))
V2 = (Vf2*Vf2+Vw2*Vw2)**0.5
x2 = math.degrees(math.atan(Vf2/Vw2))
W = (w*Q*(Vw1+Vw2)*u)/g
# Results
print "direction of velocity : %.3f \
\nvelocity of water at exit : %.3f m/s \
\ndirection of work : %.3f \
\nmagnitude of work done per kg of water : %.3f"%(x1,V2,x2,W)
# note : rounding off errors.
import math
# Variables
V1 = 40. #m/s velocity
u = 12. #m/s
x1 = 20. #angle
x2 = 90. #velocity
# Calculations
Vw1 = V1*math.cos(math.radians(x1))
Vf1 = V1*math.sin(math.radians(x1))
y1 = math.degrees(math.atan(Vf1/(Vw1-u)))
Vr1 = Vf1/math.sin(math.radians(y1))
Vr2 = 0.9*Vr1
y2 = math.degrees(math.acos(u/Vr2))
W = 1*Vw1*u
n = W/(V1*V1*0.5*1)
# Results
print "vane angle at the exit : %.4f and %.4f \
\nwork done on the vane per kg of water : %.4f N m/s\
\nefficiency : %.2f %%"%(y1,y2,W,(n*100))
import math
# Variables
d = 0.05 #m diameter
V1 = 25. #m/s velocity
x1 = 30. #angle
x = 50. #angle
x2 = x1+x
g = 10. #m/s**2
p1 = 1000.
# Calculations
a = 3.142*d*d/4
w = g*p1
Fx = (w*a*V1*V1*(math.cos(math.radians(x1))-math.cos(math.radians(x2))))/g
Fy = (w*a*V1*V1*(math.sin(math.radians(x1))-math.sin(math.radians(x2))))/g
F = (Fx*Fx+Fy*Fy)**0.5
z = math.degrees(math.atan(-Fy/Fx))
# Results
print "resultant force %.3f and %.3f \
\nangle made by the resultant force with the horizontal : %.4f"%(round(Fy,3),round(Fx,3),round(z,4))
# note : It seems book answers are wrong. Kindly check.
import math
# Variables
x1 = 0.
x2 = 60. # angle
V1 = 30. #m/s velocity
V2 = 25. #m/s velocity
m = 0.8 #Kg/s nozzle
# Calculations
Fx = m*((V1*math.cos(math.radians(x1)))-(V2*math.cos(math.radians(x2))))
Fy = m*((V1*math.sin(math.radians(x1)))-(V2*math.sin(math.radians(x2))))
R = (Fx*Fx+Fy*Fy)**0.5
z = math.degrees(math.atan(-Fy/Fx))
# Results
print "magnitude and direction of resultant force :",round(R,3),round(z,4)