# Variables :
V = 10.; #in m**3
W = 80.; #in kN
g = 9.81; #gravity accelerat
w_water = 9.81; #specific weight of water
# Calculations and Results
w = W/V; #specific weight in kN/m**3
print "Specific weight of liquid in kN/m**3 : ",w
mass_density = w*1000/g; #kg/m**3
print "Mass density of liquid in kg/m**3 : %.2f"%mass_density
specific_gravity = w/w_water; #unitless
print "Specific gravity : %.3f"%specific_gravity
# Variables :
p1 = 750.; #N/cm**2
p2 = 1400.; #N/cm**2
dvBYV = -0.150; #in %
# Calculations
dp = p2-p1; #in N/cm**2
dp = dp*10**4; #in N/m**2
K = -dp/(dvBYV/100); #N/m**2
# Results
print "Bulk modulus(N/m**2) : %.2e"%K
# Variables :
Kwater = 2.10*10**6; #kN/m**2
Kair = 140.; #kN/m**2
dvBYV = -1.; #in %
# Calculations and Results
#For Water :
dp = -Kwater*dvBYV/100; #kN/m**2
print "Increase of pressure in water in kN/m**2 : %d"%dp
#For Air :
dp = -Kair*dvBYV/100; #kN/m**2
print "Increase of pressure in air in kN/m**2",dp
# Variables :
A = 0.2; #m**2
dy = 0.02/100; #m
du = 20./100; #cm/s
mu = 0.001; #Ns/m**2
# Calculations and Results
tau = mu*du/dy; #in N/m**2
F = tau*A; #N
print "Force required in N : ",F
Power = F*du; #Watts
print "Power required in W : ",Power
# Variables :
mu = 0.1; #Ns/m**2
Sp_gravity_liquid = 2.1;
mass_density_water = 1000.; #in kg/m**3
# Calculations
rho = Sp_gravity_liquid*mass_density_water; #kg/m**3
v = mu/rho; #m**2/sec
# Results
print "Kinematic viscosity of liquid in m**2/sec : %.3e"%v
import math
# Variables :
d = 2.; #in mm
d = d/1000; #in m
sigma_water = 0.073; #N/m
sigma_mercury = 0.510; #N/m
# Calculations and Results
#Water-glass contact
w1 = 9.81; #kN/m**3(specific weight of water)
w1 = w1*10**3; #N/m**3
theta = 0; #in degree
h = 4*sigma_water*math.cos(math.radians(theta))/w1/d; #in mm
print "capillary rise for water glass contact in mm : %.2f"%(h*1000)
#Mercury-glass contact
w2 = 13.6*9.81; #kN/m**3(specific weight of mercury)
w2 = w2*10**3; #N/m**3
theta = 130; #in degree
h = 4*sigma_mercury*math.cos(math.radians(theta))/w2/d; #in mm
print "capillary rise for mercury glass contact in mm: %.3f"%(h*1000)
# Variables :
d = 6.; #in mm
d = d/1000; #in m
sigma = 0.0755; #N/m
# Calculations
#At equillibrium : p*math.pi*r**2 = sigma*2*math.pi*r
r = d/2; #in m
p = 2*sigma/r; #N/m**2
# Results
print "Intensity of pressure in N/m**2 or Pascals : %.1f"%p