import math
from pylab import *
import numpy as np
%matplotlib inline
#Initializing the variables
x = [0, 23, 28, 31, 32, 29, 22, 14, 0]
y = np.linspace(0,80,9)
xlabel('Velocity (m/s)')
ylabel('Distance from one side(mm)')
title('Velocity Distribution Curve')
grid(1)
#Calculations
plot(x,y,'-*')
show()
mu=[17.5 , 26.0, 29.6, 31.9, 30.7, 25.4, 18.1, 7.7]
# mean velocity
print "Mean velocity (m/s):",round(mean(mu),2)
import math
from pylab import *
import numpy as np
#Initializing the variables all unknowns are assigned 0
d = [0.0, 0.05, 0.075, 0, 0.030];
Q = [0, 0, 0, 0, 0];
V = [0, 0, 2, 1.5, 0];
A = [0, 0, 0, 0, 0]
#Calculations
A2 = math.pi*d[2]**2/4;
Q[2] =A2*V[2];
Q = [0,Q[2], Q[2], Q[2]/1.5 , 0.5*Q[2]/1.5];
d[3] = (Q[3]*4/(V[3]*math.pi))**0.5;
for i in range(0,5):
A[i] = math.pi*d[i]**2/4;
V[1] = V[2]*(A[2]/A[1]);
V[4]=Q[4]/A[4];
header = "Diameter(mm) Area(m2)\t Flow Rate(m3/s) Velocity(m/s)"
print header
for c in range(1,5):
mm=str(round(d[c]*1000,1))+'\t '+str(round(A[c],6))+' \t '+str(round(Q[c],6))+' \t'+str(round(V[c],2))
print mm
from __future__ import division
import math
import sympy
from sympy import diff, Symbol
#Initializing the variables
'''
def df(x, h=0.1e-5):
return ( f(x+h/2) - f(x-h/2) )/h
return df
print df(2*x,h)
'''
x = Symbol('x')
vx = 3-x
vy = 4+2*x
vz = 2-x
#Calculations
delVx = vx.diff(x);
delVy = vx.diff(x);
delVz = vx.diff(x);
result = delVx+delVy+delVz;#requirement of continuity equation (result = 0)
print "Satisfy requirement of continuity "