from __future__ import division
import math
#Initializing the variables
Pc = 0; # Atmospheric Pressure
Z3 = 30+2; #height of nozzle
Ep = 50 ; #Energy per unit weight supplied by pump
d1 = 0.150; #Diameter of sump
d2 = 0.100; #Diameter of delivery pipe
d3 = 0.075 ; #Diameter of nozzle
g = 9.81; # Acceleration due to gravity
Z2 = 2; #Height of pump
rho = 1000; # Density of water
#Calculations
U3 = (2*g*(Ep-Z3)/(1+5*(d3/d1)**4 + 12*(d3/d2)**4))**0.5;
U1 = U3/4;
Pb = rho*g*Z2 + 3*rho*U1**2;
print "Velocity of Jet through nozzle (m/s) :",round(U3,3)
print "Pressure in the suction pipe at the inlet to the pump at B (kN/m^2) :",round(Pb/1000,3)
from __future__ import division
import math
#Initializing the variables
x = 45; # Inclination of pipe
l = 2; #Length of pipe under consideration
Ep = 50 ; #Energy per unit weight supplied by pump
d1 = 0.2; #Diameter of sump
d2 = 0.1; #Diameter of delivery pipe
g = 9.81; # Acceleration due to gravity
rho = 1000; # Density of water
V1 = 2;
RD_oil = 0.9; # relative density of oil
RD_Merc = 13.6; # Relative density of Mercury
#Calculations
V2 = V1*(d1/d2)**2;
dZ = round(l*math.sin(math.radians(x)),3); # it is used in book as 1.414,by rounding so here also
rho_Oil = RD_oil*rho;
rho_Man = RD_Merc*rho;
dP = 0.5*rho_Oil*(V2**2-V1**2) + rho_Oil*g*dZ;
h = rho_Oil *( dP/(rho_Oil*g)- dZ)/(rho_Man - rho_Oil);
print "Pressure Difference(N/m2) : ",round(dP,0)
print "Difference in the level of mercury (m):",round(h,3)
from __future__ import division
import math
#Initializing the variables
d1 = 0.25; #Pipeline diameter
d2 = 0.10; #Throat diameter
h =0.63; #Difference in height
rho = 1000; #Density of water
g = 9.81 #Acceleration due to gravity
#Calculations
rho_Hg = 13.6*rho;
rho_Oil = 0.9*rho;
A1 = (math.pi*d1**2)/4; # Area at entry
m = (d1/d2)**2; #Area ratio
Q = (A1/(m**2-1)**0.5)*(2*g*h*(rho_Hg/rho_Oil -1))**0.5;
print "Thepretical Volume flow rate (m3/s ):",round(Q,3)
from __future__ import division
import math
#Initializing the variables
x = 1.5;
y =0.5;
H = 1.2;
A = 650*10**-6;
Q =0.117;
g = 9.81;
#Calculations
Cv =(x**2/(4*y*H))**0.5;
Cd = Q / (60*A*(2*g*H)**0.5);
Cc = Cd/Cv;
print "Coefficient of velocity :",round(Cv,3)
print "Coefficient of Discharge :",round(Cd,3)
print "Coefficient of contraction :",round(Cc,3)
from __future__ import division
import math
#Initializing the variables
B = 0.7;
H1 = 0.4;
H2 = 1.9;
g =9.81;
z = 1.5 ; # height of opening
#Calculations
Q_Th = 2/3 *B*(2*g)**0.5*(H2**1.5 - H1**1.5);
A = z*B;
h = 0.5*(H1+H2);
Q = A*(2*g*h)**0.5;
print "Percentage error in discharge (%):",round((Q-Q_Th)*100/Q_Th,2)
from __future__ import division
import math
#Initializing the variables
Cd = 0.6; #Coefficient of discharge
Q = 0.28;
x = 90; #Theta
g = 9.81;
dH = 0.0015;
#Calculations
H = (Q*(15/8)/(Cd*(2*g)**0.5*math.tan(math.radians(x/2))))**(2/5)
Frac_Q = 5/2 *( dH/H);
print "Percentage error in discharge(%)",round(Frac_Q*100,2)
from __future__ import division
import math
#Initializing the variables
B = 0.9;
H = 0.25;
alpha = 1.1;
g = 9.81;
#Calculations
Q = 1.84 * B * H**(3/2);
print "Q(m3/s) :",Q
i = 1;
while(i <= 3):
v = Q /(1.2* (H+0.2));
print "V(m/s) :",round(v,4)
k = ((1 + alpha*v**2/(2*g*H))**1.5 -(alpha*v**2/(2*g*H))**1.5 );
Q = k* 1.84 * B * H**(3/2);
print "Q(m3/s) :",round(Q,4)
i = i+1;
from __future__ import division
import math
#Initializing the variables
rho = 1000;
v = 66 ;
Q = 0.13;
g = 9.81;
z =240;
#Calculations
P_Jet = 0.5*rho*v**2*Q;
P_Supp = rho*g*Q*z;
P_Lost = P_Supp -P_Jet;
h = P_Lost/(rho*g*Q);
eff = P_Jet/P_Supp;
print "Part(a) - power of the jet(kW): ",round(P_Jet/1000,2)
print "Part(b) - power supplied from the reservoir (kW):",round(P_Supp/1000,2)
print "Part(C) - head used to overcome losses (m): ",round(h,2)
print "Part(d) - Efficiency(%) : ",round(eff*100,1)
from __future__ import division
import math
from scipy import integrate
#Initializing the variables
r1 = 0.2;
Z1 = 0.500;
Z2 = 0.340;
g = 9.81;
rho = 0.9*1000 ;
#Calculations
r0 = r1*((2-2*Z2/Z1)**0.5);
omega = round((2*g*Z1/r0**2)**0.5,1)
def G(r):
out =r**3 - r*r0**2;
return out
results = integrate.quad(G, r0, r1)
F = rho*omega**2*math.pi*results[0];
print r0,r1
print "Part(a) Speed of rotation (rad/s ):",round(omega,1)
print "Part(b) Upward force on the cover (N): ",round(F,1)
from __future__ import division
import math
#Initializing the variables
Ra = 0.2;
Rb = 0.1;
H = 0.18;
Za = 0.125;
#Calculations
Y = Ra**2*(H-Za);
Zb = H - Y/Rb**2;
print "Height above datum of a point B on the free surface at a radius of 100 mm (mm):",Zb*1000