import math
#initialisation of variables
Q=200 #gal/min flow rate
A=3.14 #area in^2
f=0.05 #friction factor
g=32.2 #ft/sec^2
L=800 #ft length
Sg=0.91 #density
#CALCULATIONS
v=Q/(A*3.12) #velocity of fluid
D=(2*1.0)/12 #in
hf=f*(L/D)*((v*v)/(2*g)) #head loss
hps=0.433*Sg*hf
#RESULTS
print('The pressure drop is = %.2f lbf/in^2' %hps)
import math
Q=15 #gal/min
A=0.785 #area
D=1 #diameter in
v1=0.08 #Viscocity Newts
L=400 #Length ft
g=32.2 #ft/sec^2
Sg=0.85 #density
#CALCULATIONS
v=Q/(A*3.12)
Nr=(12*v*D)/v1 #reynolds number
hf=(32*v1*L*v)/(D*D*g) #head drop
hps=0.433*Sg*hf
#RESULTS
print('The pressure drop is = %.2f lbf/in^2' %hps)
import math
#initialisation of variables
Q=600 #gal/min flow rate
A=3.14 #area in^2
f=0.040 #force in^2
D=2 #diameter in
v1=0.30 #Viscocity in^2sec
L=500 #length ft
g=32.2 #ft/sec^2
Sg=0.85 #density
#CALCULATIONS
v=Q/(A*3.12)
Nr=(12*v*D)/v1 #reynolds number
D=(2*1.0)/12
hf=f*(L/D)*((v*v)/(2*g))
hps=0.433*Sg*hf #Pressure drop
#RESULTS
print('The pressure drop is = %.2f lbf/in^2' %hps)
import math
#initialisation of variables
p=120 #pressure drop lbf/in^2
Sg=0.85 #density
Q=1000 #gal/min flow rate
A=3.14 #area
#CALCULATIONS
Cd=(1/38.06)*(Q/A)*(math.sqrt(Sg/p)) #discharge coefficient
#RESULTS
print('The discharge coefficient is = %.2f ' %Cd)
import math
#initialisation of variables
Q=50 #gal/min flow rate
A=0.785 #area
D=1 #diameter in
f=1 #
v1=0.05 #Viscocity Newts
L=500 #length ft
g=32.2 #ft/sec^2
Sg=0.91 #Density
#CALCULATIONS
v=Q/(A*3.12) #velocity
Nr=(12*v*D)/v1 #Reynolds
temp=((v*v)/(2*g))
hi=0.78*temp #inward projection
ho=1.0*temp #Outward projection
hg=10.0*temp #Globe Valve
he=4*0.90*temp # 4 std 90 degree elbow
hn=(3.0/4)*temp #sudden enlargement
hc=0.5*3.0/4*temp #Sudden contraction
hff=hi+ho+hg++he+hn+hc #Total head loss
hps=0.433*Sg*hff
#RESULTS
print('The pressure drop is = %.2f lbf/in^2' %hps)
import math
#initialisation of variables
Q=150 #gal/min flow rate
A=0.785 #area in^2
D=1 #diameter in
f=0.045 #
v1=0.10 #Viscocity newts
Sg=0.91 #density
K=2.5
#CALCULATIONS
v=Q/(A*3.12)
Nr=(12*v*D)/v1 # Reynolds number
Le=(D*K)/(12*f) #length
#RESULTS
print('The equivalent length is = %.2f ft' %Le)
import math
#initialisation of variables
Q=100 #gal/min flow rate
A1=3.14 #area in^2
A2=0.785 #area in^2
D=2 #Diameter in
k=12.4 #K-factor
g=32.2 #ft/sec^2
L=134.58 #Length ft
p=224.7 #Total pressure drop lbf/in^2
Q=100 #gal/min flow rate
L2=35.33 #ft length
#CALCULATIONS
v1=Q/(A1*3.12) #velocity
v2=Q/(A2*3.12) #velocity
v=0.001552*80 # kinematic viscosity from cSt to newts
Nr=(12*v1*D)/v #Reynold number
D1=1
D2=1
k2=20
f2=0.05
Nr2=(12*v2*D1)/v #Reynold number
f1=64/Nr
Le=(D*k)/(12*f1) #length
hf=f1*((L*(v1*v1))/((2.0/12.0)*(2*g)))
hsif=0.433*0.88*hf #pressure loss
Le2=(D2*k2)/(12*f2)
hf2=f2*((L2*(v2*v2))/((1.0/12.0)*(2*g)))
hsif2=0.433*0.88*hf2 #pressure loss
pd=hsif+hsif2
Fhp=(pd*Q)/1714
#RESULTS
print('The pressure drop is = %.2f lbf/in' %pd)
print('The fluid horsepwer is = %.2f hp' %Fhp)