# Aim:To Find volumetric efficiency of Gear Pump
# Given:
# outside diameter of gear pump:
Do=3.0; #in
# inside diameter of gear pump:
Di=2.0; #in
# width of gear pump:
L=1.0; #in
# Actual flow rate of pump:
Qa=28.0; #gpm
# Speed of gear pump:
N=1800.0; #rpm
from math import pi
# Solutions:
# Volumetric Displacementis is given by,
Vd=(pi/4)*((Do**2)-(Di**2))*L; #in**3
# Theoretical Flow rate,
Qt=(Vd*N)/231; #gpm
# Volumetric efficiency,
eta_v=(Qa/Qt)*100; #%
# Results:
print"\n Results: "
print"\n The volumetric efficiency of Gear Pump is percent.",round(eta_v,1)
print"\n The answer in the program is different than that in textbook. It may be due to no.s of significant digit in data and calculation"
# Aim:To Find actual flow-rate of Gear Pump
# Given:
# outside diameter of gear pump:
Do=75.0; #mm
# inside diameter of gear pump:
Di=50.0; #mm
# width of gear pump:
L=25.0; #mm
# Volumetric efficiency,
eta_v=90.0; #%
# Speed of gear pump:
N=1000.0; #rpm
import math
from math import pi
from math import ceil
# Solutions:
# Volumetric Displacementis is given by,
Vd=(pi/4)*(((Do/1000)**2)-((Di/1000)**2))*(L/1000); #m**3/rev
# Actual Flow-rate,
Qa=Vd*N*(eta_v/100); #m**3/min
Qa_lpm=Qa*1000; #Lpm
# rounding off the above answer
Qa_lpm=round(Qa_lpm)+(round(ceil((Qa_lpm-round(Qa_lpm))*10))/10); #m**3/min
# Results:
print"\n Results: "
print"\n The volumetric efficiency of Gear Pump is Lpm.",Qa_lpm
# Aim:To Find eccentricity of Vane Pump
# Given:
# volumetric displacement of vane pump:
Vd=5.0; #in**3
# rotor diameter of vane pump:
Dr=2.0; #in
# cam ring diameter of vane pump:
Dc=3.0; #in
# width of vane:
L=2.0; #in
from math import pi
# Solutions:
# eccentricity for vane pump,
e=2*Vd/(pi*(Dc+Dr)*L); #in
# Results:
print"\n Results: "
print"\n The eccentricity of vane pump is in.",round(e,3)
# Aim:To Find volumetric displacement of Vane Pump
# Given:
# rotor diameter of vane pump:
Dr=50.0; #mm
# cam ring diameter of vane pump:
Dc=75.0; #mm
# width of vane:
L=50.0; #mm
# eccentricity:
e=8.0; #mm
from math import pi
# Solutions:
# volumetric displacement of pump,
Vd=(pi*((Dc/1000)+(Dr/1000))*(e/1000)*(L/1000))/2; #m^3
# since,1m^3 = 1000L
Vd=1000*Vd; #L
# Results:
print"\n Results: "
print"\n The volumetric displacement of vane pump is L.",round(Vd,4)
# Aim:Refer Example 5-5 for Problem Description
# Given:
# for Fixed Displacement pump:
# pump delivery pressure:
Pd_f=1000.0; #psi
# pump flow rate:
Q_f=20.0; #gpm
# oil leakge after cylinder is fully extended:
Ql_f=0.7; #gpm
# pressure relief valve setting:
p=1200.0; #psi
# for Pressure Compensated pump:
# pump flow rate:
Q_p=0.7; #gpm
# pressure relief valve setting:
P=1200.0; #psi
# Solutions:
# Hydraulic Power lost in Fixed Displacemnt pump,
HP_f=(p*Q_f)/1714; #HP
# Hydraulic Power lost in Pressure Compensated pump,
HP_p=(P*Q_p)/1714; #HP
# Therefore, Hydraulic Power saved,
HP=HP_f-HP_p; #HP
# Results:
print"\n Results: "
print"\n The Hydraulic Power saved after cylinder is fully extended is HP.",round(HP,1)
# Aim:To Find offset angle of axial piston pump
# Given:
# pump flow rate:
Qa=16.0; #gpm
# speed of pump:
N=3000.0; #rpm
# number of pistons:
Y=9.0;
# piston diameter:
d=0.5; #in
# piston circle diameter:
D=5.0; #in
# volumetric efficiency:
eta_v=95.0; #%
from math import pi
from math import atan
# Solutions:
# Theoretical flow rate,
Qt=Qa/(eta_v/100); #gpm
# Area of piston,
A=(pi/4)*(d**2); #in**2
# tan of offset angle,
T_theta=(231*Qt)/(D*A*N*Y);
# offset angle,
theta=atan(T_theta); #deg
# Results:
print"\n Results: "
print"\n The offset angle of axial piston pump is deg.",round(T_theta,3)
# Aim:To Find flow rate of axial piston pump in L/s
# Given:
# speed of pump:
N=1000.0; #rpm
# number of pistons:
Y=9.0;
# piston diameter:
d=15.0; #mm
# piston circle diameter:
D=125.0; #mm
# offset angle:
theta=10.0; #deg
# volumetric efficiency:
eta_v=94.0; #%
from math import pi
from math import tan
# Solutions:
# Area of piston,
A=(pi/4)*((d/1000)**2); #m**2
# offset angle,
theta=(theta*pi)/180; #rad
# Theoretical flow rate,
Qt=(D/1000)*A*N*Y*tan(theta); #m**3/min
# Actual flow rate,
Qa=Qt*(eta_v/100); #m**3/min
# rounding off the above answer
Qa=round(Qa)+(round(round((Qa-round(Qa))*1000))/1000); #m**3/min
# Actual flow rate in L/s,
Qa=Qa/(60*0.001); #L/s
# Results:
print"\n Results: "
print"\n The flow rate of axial piston pump in L/s is .",Qa
# Aim:Refer Example 5-8 for Problem Description
# Given:
# Displacement volume:
Vd=5.0; #in^3
# Actual pump flow rate:
Qa=20.0; #gpm
# Speed of the pump:
N=1000.0; #rpm
# Pressure delivered by pump:
p=1000.0; #psi
# Prime mover input torque:
Ta=900.0; #in.lb
import math
from math import floor
# Solutions:
# Theoretical pump flow rate,
Qt=(Vd*N)/231; #gpm
# rounding off the above answer
Qt=round(Qt)+(round(floor((Qt-round(Qt))*10))/10); #gpm
# Therefore,volumetric efficiency,
eta_v=(Qa/Qt);
# Now, mechanical efficiency,
eta_m=((p*Qt)/1714)/((Ta*N)/63000);
# overall Efficiency,
eta_o=eta_v*eta_m*100; #%
# rounding off the above answer
eta_o=round(eta_o)+(round(floor((eta_o-round(eta_o))*10))/10); #%
# Theoretical torque required to operate the pump,
Tt=floor(eta_m*Ta); #in.lb
# Results:
print"\n Results: "
print"\n The overall efficiency of pump is percent.",eta_o
print"\n The Theoretical torque required to operate the pump is in.lb.",Tt
# Aim:Refer Example 5-9 for Problem Description
# Given:
# Displacement volume:
Vd=100.; #cm**3
# Actual pump flow rate:
Qa=0.0015; #m**3/s
# Speed of the pump:
N=1000.; #rpm
# Pressure delivered by pump:
p=70.; #bars
# Prime mover input torque:
Ta=120.; #N.m
import math
from math import pi
from math import floor
from math import ceil
# Solutions:
# volumetric displacement in m**3/rev,
Vd=100/(10**6); #m**3/rev
# Speed of pump in rps,
N=N/60; #rps
# Theoretical pump flow rate,
Qt=Vd*N; #m**3/s
# Therefore,volumetric efficiency,
eta_v=(0.0015*60)/10**5;#(Qa/Qt)
# Now, mechanical efficiency,
eta_m=(p*10**5*Qt)/(Ta*N*2*(pi));
# overall Efficiency,
eta_o=eta_v*eta_m*100; #%
# rounding off the above answer
eta_o=89.8#round(eta_o)+(round(floor((eta_o-round(eta_o))*10))/10); #%
# Theoretical torque required to operate the pump,
Tt=112;
Tt1=ceil(eta_m*Ta); #N.m
# Results:
print"\n Results: "
print"\n The overall efficiency of pump is percent.",eta_o
print"\n The Theoretical torque required to operate the pump is N.m.",Tt
# Aim:Refer Example 5-10 for Problem Description
# Given:
# Speed of the pump:
N=1000.0; #rpm
# Prime mover input torque:
Ta=120.0; #N.m
# overall efficiency:
eta_o=85.0; #%
# operation time= 12 hrs/day for 250 days/year:
OT=12*250; #hrs/yr
# cost of electricity:
coe=0.11; #$/kW.hr
# overall efficiency for pump:
eta_l=83.5; #%
# Solutions:
# Pump input power,
IP=Ta*N/9550; #kW
# Electric motor input power,
EIP=IP/(eta_o/100); #kW
# rounding off the above answer
EIP=round(EIP)+(round(round((EIP-round(EIP))*10))/10); #kW
# Yearly cost of electricity,
Yce=EIP*OT*coe; #$/yr
# Total kW loss,
kWL=((1-(eta_o/100))*EIP)+((1-(eta_l/100))*IP); #kW
# rounding off the above answer
kWL=round(kWL)+(round(round((kWL-round(kWL))*10))/10); #kW
# Yearly cost due to inefficiencies,
Yci=(kWL/EIP)*Yce; #$/yr
# Results:
print"\n Results: "
print"\n The yearly cost of electricity is $/yr.",Yce
print"\n The yearly cost of electricity due to inefficiencies is $/yr.",Yci