Chapter 3 : Fluidization and Mapping of Regimes

Example 1, Page 68

In [1]:
weight = [0,60,150,270,330,360.0];        # Weight in grams for the oversized particles
psize = [50,75,100,125,150,175];          #PSD in micrometers

#CALCULATION
l = len(psize); # To obtain the size of input array
# Computation of sauter mean diameter for the given PSD
i = 0;
dpi = [0,0,0,0,0,0]
weightf = [0,0,0,0,0,0]
dp = [0,0,0,0,0,0]
while i<l-1:
        dpi[i]=(psize[i]+ psize[i+1])/2.0;
        weightf[i]=(weight[i+1]-weight[i])/weight[5];    
        dp[i]=weightf[i]/float(dpi[i]);    
        i=i+1;

dpbar=1/sum(dp);                        #Calculation of average particle daimeter Eq.(15)

#OUTPUT
print '\n The Sauter mean diameter of the material with the given particle size distribution = %.0f micrometer'%dpbar
 The Sauter mean diameter of the material with the given particle size distribution = 98 micrometer

Example 2, Page 76

In [2]:
#Estimation of Minimum fluidizing velocity

#INPUT
ephsilon=0.55;     #Void fraction of bed
rhog=0.0012;       #Density of gas in g/cc
myu=.00018;        #Viscosity of gas in g/cm s
dpbar=0.016;       #Mean diameter of solids in centimeter
phis=0.67;         #Sphericity of solids
rhos=2.6;          #Density of solids in g/cc
g=980;             #Acceleration due to gravity in square cm/s**2

#CALCULATION
#Computation of umf using the simplified equation for small particles
umf=((dpbar**2)*(rhos-rhog)*g*(ephsilon**3)*(phis**2))/(150*myu*(1-ephsilon));#Simplified equation to calculate minimum fluidizing velocity 
                                                                              #for small particles Eq.(21)
Re=(dpbar*umf*rhog)/myu;#To calculate Reynolds number for particle

#Computation of umf if neither void fraction of bed nor sphericity is known
c1=28.7
c2=0.0494;                      #Value of constants from Table 4, page 70
umf1=(myu/(dpbar*rhog))*(((c1**2)+((c2*(dpbar**3)*rhog*(rhos-rhog)*g)/(myu**2)))**0.5-c1); #Equation to calculate minimum fluidizing velocity 
                                                                                           #for coarse particles Eq.(25)
err=((umf-umf1)/umf)*100;       #Calculation of error from experimental value

#OUTPUT
if Re<20:
	print 'The particle Reynolds no = %f'%Re
	print 'The simplified equation used for calculating minimum fluidizing velocity is valid.'

print 'The minimum fluidizing velocity by simplified equation for small particles = %.2fcm/s'%umf
print 'The minimum fluidizing velocity by equation for coarse partilces = %.2fcm/s'%umf1
print 'This value is %d percent below the experimentally reported value.'%err
The particle Reynolds no = 0.427493
The simplified equation used for calculating minimum fluidizing velocity is valid.
The minimum fluidizing velocity by simplified equation for small particles = 4.01cm/s
The minimum fluidizing velocity by equation for coarse partilces = 3.10cm/s
This value is 22 percent below the experimentally reported value.

Example 3, Page 82

In [3]:
rhog=1.2e-3;    #Density of air in g/cc
myu=1.8e-4      #Viscosity of air in g/cm s
dpbar=0.016     #Mean diameter of solids in centimeter
phis=0.67;      #Sphericity of solids
rhos=2.6;       #Density of solids in g/cc
g=980           #Acceleration due to gravity in square cm/s**2

#CALCULATION
dpstar=dpbar*((rhog*(rhos-rhog)*g)/myu**2)**(1/3.0);              #Calculation of dimensionless particle size Eq.(31)
utstar=((18/(dpstar**2))+(2.335-(1.744*phis))/(dpstar**0.5))**-1; #Calculation of dimensionless gas velocity Eq.(33)
ut=utstar*((myu*(rhos-rhog)*g)/rhog**2)**(1/3.0);                 #Calculation of terminal velocity of falling particles Eq.(32)


#OUTPUT
print 'The dimensionless particle size = %.2f'%dpstar
print 'The dimensionless gas velocity = %.3f'%utstar
print 'The terminal velocity of falling particles = %d cm/s'%ut
The dimensionless particle size = 7.28
The dimensionless gas velocity = 1.296
The terminal velocity of falling particles = 88 cm/s

Example 4, Page 91

In [4]:
rhos=1.5;                 #Density of Solid in g/cc
uo1=40; uo2=80;           #Superficial gas velocity in cm/s
dp1=0.006; dp2=0.045;     #Particle size in centimeter
rhog1=1.5E-3; rhog2=1E-3; #Density of gas in g/cc
myu1=2E-4; myu2=2.5E-4;   #Viscosity of air in g/cm s
g=980;                    #Acceleration due to gravity in square cm/s**2

#CALCULATION
#for smaller particles
dpstar1=dp1*((rhog1*(rhos-rhog1)*g)/myu1**2)**(1/3.0);     #Calculation of dimensionless particle diamter Eq.(31)
uostar1=uo1*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0);
uostar2=uo2*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)

#for larger particles 
dpstar2=dp2*((rhog2*(rhos-rhog2)*g)/myu2**2)**(1/3.0);     #Calculation of dimensionless particle diamter Eq.(31)
uostar3=uo1*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0);
uostar4=uo2*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)


#OUTPUT
print 'For particle of size %.3f centimeter'%dp1
print 'The dimensionless particle diameter = %.2f'%dpstar1
print 'The dimensionless superficial gas velocity = %.4fcm/s(for superficial gas velocity of %dcm/s)'%(uostar1,uo1)
print 'The dimensionless superficial gas velocity = %.3fcm/s(for superficial gas velocity of %dcm/s)'%(uostar2,uo2)
print 'From Fig.16(page 89)comparing u*=%.4f vs dp*=%.2f'%(uostar1,dpstar1)
print 'For Superficial gas velocity =%d Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed'%(uo1)
print 'From Fig.16(page 89)comparing u* =%.3f vs dp* =%f'%(uostar2,dpstar1)
print 'For Superficial gas velocity =%f Mode of Fluidization:Fast fluidization(requires a circulating solid system)'%(uo2)
print 'For particle of size %f centimeter'%(dp2)
print 'The dimensionless particle diameter = %f'%(dpstar2)
print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar3,uo1)
print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar4,uo2)
print 'From Fig.16(page 89)comparing u*=%f vs dp*=%f'%(uostar3,dpstar2)
print 'For Superficial gas velocity =%f Mode of Fluidization:Bublling Fluidization'%(uo1)
print 'From Fig.16(page 89)comparing u* =%f vs dp* =%f'%(uostar4,dpstar2)
print 'For Superficial gas velocity =%f Mode of Fluidization:Bubbling Fluidization'%(uo2)
For particle of size 0.006 centimeter
The dimensionless particle diameter = 2.28
The dimensionless superficial gas velocity = 0.7885cm/s(for superficial gas velocity of 40cm/s)
The dimensionless superficial gas velocity = 1.577cm/s(for superficial gas velocity of 80cm/s)
From Fig.16(page 89)comparing u*=0.7885 vs dp*=2.28
For Superficial gas velocity =40 Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed
From Fig.16(page 89)comparing u* =1.577 vs dp* =2.282737
For Superficial gas velocity =80.000000 Mode of Fluidization:Fast fluidization(requires a circulating solid system)
For particle of size 0.045000 centimeter
The dimensionless particle diameter = 12.890262
The dimensionless superficial gas velocity = 0.558561cm/s(for superficial gas velocity of 40.000000cm/s)
The dimensionless superficial gas velocity = 1.117122cm/s(for superficial gas velocity of 80.000000cm/s)
From Fig.16(page 89)comparing u*=0.558561 vs dp*=12.890262
For Superficial gas velocity =40.000000 Mode of Fluidization:Bublling Fluidization
From Fig.16(page 89)comparing u* =1.117122 vs dp* =12.890262
For Superficial gas velocity =80.000000 Mode of Fluidization:Bubbling Fluidization
In [ ]: