#given data
import math
T=300 #in Kelvin
ND=5*10**13 #in cm**-3
NA=0 #in cm**-3
ni=2.4*10**13 #in cm**-3
#Calculation
no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2) #in cm**-3
po=ni**2/no #in cm**-3
#Result
print"Majority carrier electron concentration is ",round(no,-11),"cm**-3"
print"Minority carrier hole concentration is ",round(po,-11)," cm**-3"
#given data
import math
T=300 #in Kelvin
ND=10**16 #in cm**-3
NA=0 #in cm**-3
ni=1.5*10**10 #in cm**-3
#Calculation
no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2) #in cm**-3
po=ni**2/no #in cm**-3
#result
print"Majority carrier electron concentration is ",no,"cm**-3"
print"Minority carrier hole concentration is ",round(po,0)," cm**-3"
#given data
import math
T=300 #in Kelvin
ND=3*10**15 #in cm**-3
NA=10**16 #in cm**-3
ni=1.6*10**10 #in cm**-3
#Calculation
po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0) #in cm**-3
no=ni**2/po #in cm**-3
#Result
print"Majority carrier hole concentration is",round(po,-8)," cm**-3"
print"Minority carrier electron concentration is ",round(no,0)," cm**-3"
#Given
import math
ND=3*10**15 #in cm**-3
Eg=1.12 #eV
k=8.62*10**-5 #eV/k
Nc=2.8*10**19
Nv=1.04*10**19
#Calculation
import math
# from the equation po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0) #in cm**-3
No=1.05*ND
ni=math.sqrt((No-ND/2.0)**2-0.25*ND**2)
#From ni**2=Nc*Nv*exp(-Eg/(k*t))
T=Eg/(-math.log(ni**2/(Nc*Nv))*k)
#Result
print "The maximum Temprature is ",round(T,1),"K"
#given data
import math
T=300 #in Kelvin
ND=10**15 #in cm**-3
NA=10**18 #in cm**-3
ni=1.5*10**10 #in cm**-3
VT=T/11600.0 #in Volts
#Calculation
Vbi=VT*math.log(NA*ND/ni**2) #in Volts
#result
print"Built in potential barrier is",round(Vbi,4),"V"
T=300 #in Kelvin
ND=10**21 #in m**-3
NA=10**21 #in m**-3
ni=1.5*10**16 #in m**-3
VT=T/11600.0 #in Volts
#Calculation
import math
Vo=VT*math.log(NA*ND/ni**2) #in Volts
#result
print"Contact potential is",round(Vo,4),"V"
#given data
import math
T=300 #in Kelvin
ND=10**15 #in cm**-3
NA=10**16 #in cm**-3
ni=1.5*10**10 #in cm**-3
VT=T/11600.0 #in Volts
e=1.6*10**-19 #in Coulamb
#calculation
epsilon=11.7*8.854*10**-14 #constant
Vbi=VT*math.log(NA*ND/ni**2) #in Volts
SCW=math.sqrt((2*epsilon*Vbi/e)*(NA+ND)/(NA*ND))#in cm
SCW=SCW*10**4 #in uMeter
xn=0.864 #in uM
xp=0.086 #in uM
Emax=-e*ND*xn/epsilon #in V/cm
#result
print"Space charge width is",round(SCW,2),"micro meter"
print"At metallurgical junction, i.e for x=0 the electric field is ",round(Emax/10000,0),"V"#Note : Ans in the book is wrong
#given data
import math
Ecf=0.3 #in Volts
T=27.0+273.0 #in Kelvin
delT=55 #in degree centigrade
#calculation
#formula : Ecf=Ec-Ef=K*T*math.log(nc/ND)
#let K*math.log(nc/ND)=y
#Ecf=Ec-Ef=T*y
y=Ecf/T #assumed
Tnew=273+55 #in Kelvin
EcfNEW=y*Tnew #in Volts
#result
print"New position of fermi level is ",round(EcfNEW,4),"V"
#given data
import math
T=300 #in Kelvin
ND=8*10**14 #in cm**-3
NA=8*10**14 #in cm**-3
ni=2*10**13 #in cm**-3
k=8.61*10**-5 #in eV/K
#calculation
Vo=k*T*math.log(NA*ND/ni**2) #in Volts
#Result
print"Contact potential is ",round(Vo,2),"V"
#given data
ND=2*10**16 #in cm**-3
NA=5*10**15 #in cm**-3
Ao=4.83*10**21 #constant
T=300.0 #in Kelvin
EG=1.1 #in eV
kT=0.026 #in eV
#Calculation
ni=Ao*T**(1.5)*math.exp(-EG/(2*kT)) #in m**-3
p=(ni/10**6)**2/ND #in cm**-3
n=((ni/10**6)**2)/NA #in cm**-3
#Result
print"Hole concentration in cm**-3 : %.1e"%round(p,0),"/cm**3"
print"electron concentration in cm**-3 :%.1e"%round(n,0),"/cm**3"
print"\nNOTE:\nSlight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of",ni
if n < e:
print"\n\nthe given Si is of P-type"
else:
print "\nThe given Si is of N-type"
V=5 #in volts
Vo=0.7 #in Volts
R=100 #in Kohm
#Calculation
I=(V-Vo)/R #in Ampere
#result
print"Current flowing through the circuit is",round(I*1000,0),"mA"
V=15 #in volts
Vo=0.7 #in Volts
R=7 #in Kohm
#Calculation
I=(V-2*Vo)/R
I=(V-2*Vo)/R #in mAmpere
VA=I*R #in Volts
#result
print"Voltagee VA is ",VA,"V"
V=15 #V, voltage
Vb=0.3 #V, Barrier Potential #When supply is switched on
#Calculation
VA=V-Vb
#Result
print"The Voltage VA is ",VA,"V"
#given data
Vz=5 #in volts
to=25 #in degree centigrade
t=100 #in degree centigrade
Vdrop=4.8 #in Volts
#calculation
delVz=Vdrop-Vz #in Volts
delt=t-to #in degree centigrade
TempCoeff=delVz*100/(Vz*delt)
#result
print"Temperature coefficient f zener diode is ",round(TempCoeff,3),"percent"
Vz=8.0 #in volts
VS=12.0 #in volts
RL=10.0 #in Kohm
Rs=5.0 #in Kohm
#part (a)
Vout=Vz #in volts
#part (b)
Vrs=VS-Vout #in volts
IL=Vout/RL #in mAmpere
Is=(VS-Vout)/Rs #in mAmpere
#part c
Iz=Is-IL #in mAmpere
#result
print"(a)Output voltage will be equal to Vout=",Vout," Volts"
print"(b)Voltage across Rs is Rs=",Vrs,"V"
print"(c)Current through zener diode is Iz=",round(Iz,1),"mA"
#given data
Vz=50. #in volts
VSmax=120.0 #in volts
VSmin=80.0 #in volts
RL=10.0 #in Kohm
Rs=5.0 #in Kohm
#Calculation
Vout=Vz #in Volts
IL=Vout/RL #in mAmpere
ISmax=(VSmax-Vout)/Rs #in mAmpere
Izmax=ISmax-IL #in mA
Ismin=(VSmin-Vout)/Rs#in mAmpere
Izmin=Ismin-IL#in mA
#Result
print"Maximum zener diode current is ",Izmax,"mA"
print"Minimum zener diode current is ",Izmin,"mA"
Vz=15 #in volts
Izk=6.0 #in mA
Vout=15 #in Volts
Vs=20 #in Volts
ILmin=10.0 #in mA
ILmax=20.0 #in mA
RS=(Vs-Vz)*1000/(ILmax+Izk) #in ohm
#result
print"sereis Resistance is ",round(RS,1),"ohm"
print"The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA"
print"when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \nThus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \nThus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. "
Vs=16.0 #in volts
RL=1.2 #in Kohm
Rs=1.0 #in Kohm
#calculation
#If zener open circuited
VL=Vs*RL/(Rs+RL) #in Volts
Iz=0 #in mA
Pz=VL*Iz #in watts
#result
print"When zener open circuited Voltage across load is ",round(VL,2),"V"
print"Zener current is ",Iz,"mA"
print"Power is",Pz,"watt"
Vin=20 #in volts
Rs=220.0 #in Kohm
Vz=10 #in volts
RL2=50.0 #in Kohm
RL1=200 #in Kohm
#calculation
# part (i) RL=50 #in Kohm
VL1=Vin*RL1/(RL+Rs)
IR=Vin/(Rs+RL) #in mA
IL=IR #in mA
IZ=0 #in mA
if VL1< Vz:
print"Zener diode will not conduct and VL=",round(VL1,1),"V"
else:
print "Zener diode will conduct"
#Result
print"When RL=200 ohm"
print"IL is",round(IL*1000,2),"mA"
print"IR is",round(IR*10**3,2),"mA"
print"Iz in mA: ",round(IZ,0),"mA"
# part (ii) RL=200#in Kohm
RL=200 #in Kohm
VL2=Vin*RL2/(RL2+Rs)
IR=Vin/(Rs+RL2) #in mA
IL=IR #in mA
IZ=0 #in mA
#result
if VL2< Vz:
print"Zener diode will not conduct and VL=",round(VL2,1),"V"
else:
print "Zener diode will conduct"
print"When RL=50 ohm"
print"IL is",round(IL*1000,2),"mA"
print"IR is",round(IR*10**3,2),"mA"
print"Iz in mA: ",IZ,"mA"
RL=10.0 #in Kohm
Rs=5.0 #in Kohm
Vin=100 #in Volts
#Calculation
V=Vin*RL/(RL+Rs) #in Volt
VZ=50 #in Volts
VL=VZ #in volts
#Apply KVL
VR=100-50 #in Volts
VR=50 #in Volts
if V< VZ:
print"Zener diode is OFF state"
else:
print "zener diode is ON state"
print"Hence the voltage dropp across the 5 Kohm resistor in Volts is ",VR,"V"
RL=120.0 #in ohm, load resistance
Izmin=20 #in mA min. diode current
Izmax=200 #in mA max. diode current
VL=12 #in Volts
VDCmin=15 #in Volts
VDCmax=19.5 #in Volts
Vz=12 #in Volts
IL=VL/RL #in Ampere
IL=IL*1000 #in mAmpere
#calculation
#For VDCmin = 15 volts
VSmin=VDCmin-Vz #in Volts
#For VDCmax = 19.5 volts
VSmax=VDCmax-Vz #in Volts
ISmin=Izmin+IL #in mA
Ri=VSmin/ISmin #in Kohm
Ri=Ri*10**3 #in ohm
#result
print"The resistance Ri is ",Ri,"ohm"
VRL=10 #in Volts Diode resistance
Vi=50 #in Volts
R=1.0 #in Kohm Resistance
Vz=10 #in Volts
VL=Vz #in Volts
Izm=32 #in mA
IR=(Vi-VL)/R #in mA
Izmin=0 #in mA
ILmax=IR-Izmin #in mA
RLmin=VL/ILmax #in Ohm
Izmax=32 #in mA
ILmin=IR-Izmax #in mA
VL=Vz #in Volts
RLmax=VL/ILmin #in Ohm
#Result
print"Range of RL in Kohm : From ",RLmin*1000,"ohm to ",RLmax,"kohm"
print"Range of IL in mA : From ",ILmin,"mA to ",ILmax,"mA"