# Chapter 3 Liquids¶

## Example 3.1 , Page no:41¶

In [1]:
import math
from __future__ import division

#initialisation of variables
p= 388.6 #mm
p1=26.5 #mm
T= 60 #C
R= 1.99 #cal mole^-1 A^-1

#CALCULATIONS
Lv= math.log10(p/p1)*2.303*R*273*(273+T)/(T)

#RESULTS
print"heat of vapourisation of benzene=",round(Lv+2),"cal per mole";

heat of vapourisation of benzene= 8100.0 cal per mole


## Example 3.2 , Page no:52¶

In [2]:
import math
from __future__ import division

#initialisation of variables
d= 0.789 #gram per cc
r= 0.010 #cm
h= 5.76 #cm
g= 980.7 # cm /sec^2

#CALCULATIONS
R= d*h*r*g/2

#RESULTS
print"Surface tension=",round(R,1)," dynes per cm";

Surface tension= 22.3  dynes per cm


## Example 3.3 , Page no:56¶

In [3]:
import math
from __future__ import division

#initialisation of variables
W= 0.220 #gms
g= 980.7 #cm per sec62
f= 0.98
l= 4 #cm

#CALCULATIONS
T= W*g/(2*l)
Tc= T*f

#RESULTS
print"apparent surface tension=",round(T,1),"dynes per cm";
print"exact surface tension=",round(Tc,1),"dynes per cm";

apparent surface tension= 27.0 dynes per cm
exact surface tension= 26.4 dynes per cm


## Example 3.4 , Page no:60¶

In [4]:
import math
from __future__ import division

#initialisation of variables
n2= 10.05*10**-3 #poise
d1= 0.879 #gms cm^-3
t= 88 #sec
d2= 1 #gms cm^-3
t1= 120 #sec

#CALCULATIONS
n1= d1*t/(d2*t1)

#RESULTS
print"relative viscosity=",round(n1,3);

relative viscosity= 0.645