#Variable declaration
l = 10.0 #Conductor length(m)
B = 0.56 #Magnetic flux density(T)
I = 2.0 #Current through conductor(A)
#Calculation
F = B*I*l #Magnitude of force(N)
#Result
print('Magnitude of force , F = %.1f N' %F)
#Variable declaration
I = 20.0 #Total current(A)
V_t = 250.0 #Supply voltage(V)
R_sh = 200.0 #Shunt field resistance(ohm)
R_a = 0.3 #Armature resistance(ohm)
#Calculation
I_sh = V_t/R_sh #Shunt field current(A)
I_a = I-I_sh #Armature current(A)
#For case(i)
E_b = V_t-R_a*I_a #Back emf(V)
#For case(ii)
P_md = E_b*I_a #Mechanical power developed(W)
#Result
print('(i) Value of back emf , E_b = %.1f V' %E_b)
print('(ii) Mechanical power developed in the armature motor , P_md = %.1f W' %P_md)
print('\nNOTE : ERROR : Armature current I_a = 18.13 A is taken in textbook solution instead of I_a = 18.75 A')
#Variable declaration
R_a = 0.7 #Armature circuit resistance(ohm)
V_t = 5.0 #Applied voltage(V)
I_anl = 5.0 #No-load armature current(A)
I_afl = 35.0 #Full-load armature current(A)
#Calculation
E_bnl = V_t-R_a*I_anl #Back emf under no-load(V)
E_bfl = V_t-R_a*I_afl #Back emf under full-load(V)
E_bc = E_bnl-E_bfl #Change in back emf from no-load to full load(V)
#Result
print('Change in back emf from no-load to full load , E_bc = %.f V' %E_bc)
#Variable declaration
I = 40.0 #Current(A)
V_t = 230.0 #Supply voltage(V)
N = 1100.0 #Speed(rpm)
R_a = 0.25 #Armature resistance(ohm)
R_sh = 230.0 #Shunt field resistance(ohm)
#Calculation
I_sh = V_t/R_sh #Shunt field current(A)
I_a = I-I_sh #Armature current(A)
E_b = V_t-I_a*R_a #Back emf(V)
T_a = 9.55*E_b*I_a/N #Armature torque(N-m)
#Result
print('Torque developed by the armature , T_a = %.2f N-m' %T_a)
#Variable declaration
P = 6.0 #Number of poles
V_t = 230.0 #Supply voltage to shunt motor(V)
Z = 450.0 #Number of conductors
R_a = 0.8 #Armature resistance(ohm)
I = 30.0 #Current drawn from supply(A)
P_0 = 5560.0 #Output power(W)
I_f = 3.0 #Current through field winding(A)
phi = 25*10**-3 #Flux per pole(Wb)
#Calculation
A = P #Number of parallel paths in lap winding
I_a = I-I_f #Armature current(A)
E_b = V_t-I_a*R_a #Back emf(V)
N = 60*A*E_b/(P*Z*phi) #Speed(rpm)
T_sh = 9.55*P_0/N #Shaft torque(N-m)
#Result
print('Speed , N = %.1f rpm' %N)
print('Shaft torque , T_sh = %.1f N-m' %T_sh)
#Variable declaration
I_Lnl = 5.0 #Current drawn at no-load(A)
V_t = 230.0 #Terminal voltage at no-load(V)
N_nl = 1000.0 #Speed at no-load(rpm)
R_a = 0.2 #Armature resistance(ohm)
R_f = 230.0 #Field resistance(ohm)
I_Lfl = 30.0 #Current drawn at full-load(A)
#Calculation
#Under No-load condition
I_sh = V_t/R_f #Shunt field current(A)
I_a1 = I_Lnl-I_sh #Armature current(A)
E_b1 = V_t-I_a1*R_a #Back emf(V)
#Under Full-load condition
I_a2 = I_Lfl-I_sh #Armature current(A)
E_b2 = V_t-I_a2*R_a #Back emf(V)
N_2 = (E_b2/E_b1)*N_nl #Motor speed under load condition(rpm)
#Result
print('Motor speed under load condition , N_2 = %.1f rpm' %N_2)
#Variable declaration
I_a1 = 65.0 #Current drawn(A)
V_t = 230.0 #Supply voltage(V)
N_1 = 900.0 #Speed(rpm)
R_a = 0.2 #Armature resistance(ohm)
R_sh = 0.25 #Field resistance(ohm)
I_a2 = 15.0 #Line current(A)
phi_1 = 1.0 #Assumtion of flux(Wb)
phi_2 = 0.4*phi_1 #Flux(Wb)
#Calculation
E_b1 = V_t-I_a1*(R_a+R_sh) #Initial back emf(V)
E_b2 = V_t-I_a2*(R_a+R_sh) #Final back emf(V)
N_2 = N_1*E_b2*phi_1/(E_b1*phi_2) #Speed of motor(rpm)
#Result
print('Speed of motor when line current is 15 A , N_2 = %.f rpm' %N_2)
print('\nNOTE : ERROR : In textbook question current I_a1 = 56 A is given but it should be I_a1 = 65 A')
#Variable declaration
I_Lnl = 5.0 #Current drawn at no-load(A)
V_t = 230.0 #Supply voltage at no-load(V)
R_a = 0.25 #Armature circuit resistance(ohm)
R_sh = 115 #Field circuit resistance(ohm)
I_L = 40.0 #Current under load condition(A)
#Calculation
#Under No-load condition
P_in1 = V_t*I_Lnl #Input power(W)
I_sh = V_t/R_sh #Shunt field current(A)
I_a1 = I_Lnl-I_sh #Armature current(A)
P_acu1 = I_a1**2*R_a #Armature copper loss(W)
P_shcu = I_sh**2*R_sh #Shunt field copper loss(W)
P_iron_friction = P_in1-(P_acu1+P_shcu) #Iron and friction losses(W)
#Under load condition
I_a2 = I_L-I_sh #Armature current(A)
P_acu2 = I_a2**2*R_a #Armature copper loss(W)
P_loss = P_iron_friction+P_shcu+P_acu2 #Total losses(W)
P_in2 = V_t*I_L #Input power(W)
P_0 = P_in2-P_loss #Output power(W)
n = (P_0/P_in2)*100 #Efficiency(percent)
#Result
print('Iron and friction losses , P_iron_friction = %.2f W' %P_iron_friction)
print('Efficiency , η = %.f percent' %n)
#Variable declaration
I_L = 80.0 #Current drawn(A)
V_t = 220.0 #Supply voltage(V)
N = 800.0 #Speed(rpm)
R_a = 0.1 #Armature resistance(ohm)
R_sh = 50.0 #Shunt field resistance(ohm)
P_if = 1600.0 #Iron and friction losses(W)
#Calculation
I_sh = V_t/R_sh #Shunt field current(A)
I_a = I_L-I_sh #Armature current(A)
E_b = V_t-I_a*R_a #Back emf(V)
#For case(i)
P_in = V_t*I_L #Input power(W)
P_md = E_b*I_a #Mechanical power developed in the armature(W)
P_cu = P_in-P_md #Copper loss(W)
#For case(ii)
T_a = 9.55*E_b*I_a/N #Armature torque(N-m)
#For case(iii)
P_0 = P_md-P_if #Output power(W)
T_sh = 9.55*P_0/N #Shaft torque(N-m)
#For case(iv)
n = (P_0/P_in)*100 #Efficiency(percent)
#Result
print('(i) Copper losses , P_cu = %.2f W' %P_cu)
print('(ii) Armature torque , T_a = %.2f N-m' %T_a)
print('(iii) Shaft torque , T_sh = %.2f N-m' %T_sh)
print('(iv) Efficiency , η = %.f percent' %n)