#Variable declaration
V_t = 220.0 #Supply voltage(V)
I_a1 = 10.0 #Armature current(A)
N_1 = 900.0 #Speed(rpm)
R_a = 1.0 #Armature resistance(ohm)
N_2 = 500.0 #Reduced speed(rpm)
#Calculation
E_b1 = V_t-I_a1*R_a #Initial back emf(V)
R = E_b1/I_a1*(1-(N_2/N_1)) #Value of additional resistance(ohm)
#Result
print('Value of additional resistance , R = %.1f ohm' %R)
#Variable declaration
V_t = 230.0 #Supply voltage(V)
I_a1 = 15.0 #Armature current(A)
N_1 = 650.0 #Speed(rpm)
R_a = 0.4 #Armature resistance(ohm)
R = 1.0 #Variable resistance in series with the armature(ohm)
#Calculation
E_b1 = V_t-I_a1*R_a #Initial back emf(V)
#At full load torque
E_b2 = V_t-I_a1*(R+R_a) #Final back emf(V)
N_2 = N_1*(E_b2/E_b1) #Speed at full load torque(rpm)
#At half load torque
I_a2hl = I_a1/2 #Armature current(A)
E_b2hl = V_t-I_a2hl*(R+R_a) #Back emf(V)
N_2hl = N_1*(E_b2hl/E_b1) #Speed at half load torque(rpm)
#Result
print('Speed at full load torque , N_2 = %.1f rpm' %N_2)
print('Speed at half load torque , N_2 = %.1f rpm' %N_2hl)
#Variable declaration
V_t = 230.0 #Supply voltage(V)
R_af = 0.2 #Total resistance of armature & field(ohm)
I_a1 = 10.0 #Armature current for certain load(A)
N = 1000.0 #Motor speed for certain load(rpm)
R_1 = 0 #Variable resistance for certain load(ohm)
I_a2 = 8.0 #Armature current for other load(A)
R_2 = 2.0 #Variable resistance for other load(ohm)
phi_1 = 1.0 #Assuming flux in certain load(Wb)
phi_2 = 0.8*phi_1 #Flux in other load(Wb)
#Calculation
#For certain load
R_a1 = R_af+R_1 #New armature resistance(ohm)
E_b1 = V_t-I_a1*R_a1 #Back emf(V)
#For other load
R_a2 = R_af+R_2 #New armature resistance(ohm)
E_b2 = V_t-I_a2*R_a2 #Back emf(V)
N_2 = (E_b2/E_b1)*(phi_1/phi_2)*N #New speed(rpm)
#Result
print('New speed , N_2 = %.1f rpm' %N_2)
#Variable declaration
N = 1100.0 #Speed of dc series motor(rpm)
P = 4.0 #Number of poles
path = 4.0 #Number of parallel paths
I_a1 = 15.0 #Supply current to dc series motor(A)
V_t = 220.0 #Supply voltage(V)
R_a = 0.9 #Series armature resistance(ohm)
R_se = 0.6 #Series field resistance(ohm)
I_a2 = 25 #Supply current to dc series motor(A)
phi_1 = 1.0 #Assuming flux for 15 A case(Wb)
phi_2 = 0.8*phi_1 #Flux in 25 A case(Wb)
#Calculation
#First case
R_se1 = R_se #Total series field resistance(ohm)
E_b1 = V_t-I_a1*(R_a+R_se1) #Back emf(V)
#Second case
R_se2 = R_se1/path #Total series field resistance(ohm)
E_b2 = V_t-I_a2*(R_a+R_se2) #Back emf(V)
N_2 = (E_b2/E_b1)*(phi_1/phi_2)*N #New speed(rpm)
#Result
print('Speed for second case , N_2 = %.1f rpm = %.f rpm' %(N_2,N_2))
#Variable declaration
V_t = 230.0 #Shunt motor supply voltage(V)
R_a = 0.4 #Armature resistance(ohm)
I_a = 30.0 #Armature current(A)
n = 3.0 #Number of steps
#Calculation
R_1 = V_t/I_a #Maximum resistance(ohm)
k = (R_1/R_a)**(1.0/3) #Constant
R_2 = R_1/k #Resistance(ohm)
R_3 = R_2/k #Resistance(ohm)
R_4 = R_3/k #Resistance(ohm)
R_1step = R_1-R_2 #Resistance of the first step(ohm)
R_2step = R_2-R_3 #Resistance of the second step(ohm)
R_3step = R_3-R_4 #Resistance of the third step(ohm)
#Result
print('Resistance of the first step , R_1step = %.1f ohm' %R_1step)
print('Resistance of the second step , R_2step = %.1f ohm' %R_2step)
print('Resistance of the third step , R_3step = %.2f ohm' %R_3step)
#Variable declaration
V_t = 220.0 #Shunt motor supply voltage(V)
P_0 = 3550.0 #Output power(W)
n = 0.85 #Efficiency
#Calculation
P_in = P_0/n #Input power(W)
P_tloss = P_in-P_0 #Total loss(W)
I_a = P_in/V_t #Armature current(A)
P_cu = P_tloss/2 #Copper loss(W)
R_a = P_cu/I_a**2 #Armature resistance(ohm)
I_1 = 2*I_a #Maximum starting current(A)
R_1 = V_t/I_1 #Maximum resistance(ohm)
k = (R_1/R_a)**(1.0/4) #Constant
R_2 = R_1/k #Resistance(ohm)
R_3 = R_2/k #Resistance(ohm)
R_4 = R_3/k #Resistance(ohm)
R_5 = R_4/k #Resistance(ohm)
R_1step = R_1-R_2 #Resistance of the first step(ohm)
R_2step = R_2-R_3 #Resistance of the second step(ohm)
R_3step = R_3-R_4 #Resistance of the third step(ohm)
R_4step = R_4-R_5 #Resistance of the fourth step(ohm)
#Result
print('Resistance of the first step , R_1step = %.1f ohm' %R_1step)
print('Resistance of the second step , R_2step = %.2f ohm' %R_2step)
print('Resistance of the third step , R_3step = %.2f ohm' %R_3step)
print('Resistance of the fourth step , R_4step = %.2f ohm' %R_4step)