#Variable declaration
T_st = '1.5*T_f' #Starting torque
s = 0.03 #Slip
#Calculation
I_sc_I_f = (1.5/s)**0.5 #I_sc/I_f
#Result
print('Short circuit current , I_sc = %.2f*I_f' %I_sc_I_f)
#Variable declaration
T_ratio = 50.0/100 #Ratio of starting torque to full load torque T_st/T_f
s_f = 0.03 #Full load slip
I_ratio = 5.0 #Ratio of short circuit current to full load current I_sc/I_f
#Calculation
x = (1/I_ratio)*(T_ratio/s_f)**0.5 #Percentage of taping
#Result
print('Percentage tapings required on the autotransformer , x = %.3f ' %x)
#Variable declaration
T_ratio = 25.0/100 #Ratio of starting torque to full load torque T_st/T_f
I_ratio = 3.0*120/100 #Ratio of short circuit current to full load current I_sc/I_f
#Calculation
s_f = T_ratio*3/I_ratio**2 #Full load slip
#Result
print('Full load slip , s_f = %.2f ' %s_f)
#Variable declaration
Z_icr = complex(0.04,0.5) #Inner cage impedance per phase at standstill(ohm)
Z_ocr = complex(0.4,0.2) #Outer cage impedance per phase at standstill(ohm)
V = 120.0 #Per phase rotor induced voltage at standstill(V)
#Calculation
#For case(i)
Z_com = (Z_icr*Z_ocr)/(Z_icr+Z_ocr) #Combined impedance(ohm)
I_2 = V/abs(Z_com) #Rotor current per phase(A)
R_2 = Z_com.real #Combined rotor resistance(ohm)
T = I_2**2*R_2 #Torque at stand still condition(synchronous watts)
#For case(ii)
s = 0.06 #Slip
R_ocr = Z_ocr.real
X_ocr = Z_ocr.imag
R_icr = Z_icr.real
X_icr = Z_icr.imag
Z_com6 = complex(R_ocr/s,X_ocr)*complex(R_icr/s,X_icr)/complex(R_ocr/s+R_icr/s,X_ocr+X_icr) #Combined impedance(ohm)
I2_6 = V/abs(Z_com6) #Rotor current per phase(A)
R2_6 = Z_com6.real #Combined rotor resistance(ohm)
T_6 = I2_6**2*R2_6 #Torque at 6% slip(synhronous watts)
#Result
print('(i) Torque at standstill condition , T = %.2f syn.watt' %T)
print('(ii) Torque at 6 percent slip , T_6 = %.2f syn.watt' %T_6)
print('\nNOTE : Changes in answer is due to precision i.e more number of decimal places')
#Variable declaration
V = 210.0 #Supply voltage(V)
f = 50.0 #Supply frequency(Hz)
P = 50.0 #Input power(W)
I_br = 2.5 #Line current(A)
V_L = 25.0 #Line voltage(V)
R_1 = 2.4 #DC resistance between any two terminal(ohm)
#Calculation
V_br = V_L/3**0.5 #Phase voltage(V)
P_br = P/3 #Power per phase(W)
R_eq = P_br/I_br**2 #Equivalent resistance(ohm)
R_2 = R_eq-(R_1/2) #Per phase rotor resistance(ohm)
Z_eq = V_br/I_br #Equivalent impedance(ohm)
X_eq = (Z_eq**2-R_2**2)**0.5 #Equivalent reactance(ohm)
X_1 = 0.5*X_eq #For practical cases reactances(ohm)
#Result
print('Equivalent resistance , R_eq = %.1f ohm' %R_eq)
print('Equivalent impedance , Z_eq = %.1f ohm' %Z_eq)
print('Equivalent reactance , X_eq = %.1f ohm' %X_eq)
print('Per phase rotor resistance , R_2 = %.1f ohm' %R_2)
print('Reactances for practical cases , X_1 = X_2 = %.1f ohm' %X_1)
import math
#Variable declaration
V = 210.0 #Supply voltage(V)
f = 50.0 #Supply frequency(Hz)
P = 4.0 #Number of poles
P_0 = 400.0 #Input power(W)
I_0 = 1.2 #Line current(A)
V_0 = 210.0 #Line voltage(V)
P_fw = 150.0 #Total friction and windage losses(W)
R = 2.2 #Stator resistance between any two terminals(ohm)
#Calculation
R_1 = R/2 #Per phase stator resistance(ohm)
P_scu = 3*I_0**2*R_1 #Stator copper loss(W)
P_core = P_0-P_fw-P_scu #Stator core loss(W)
R_0 = (V_0/3**0.5)**2/(P_core/3) #No-load resistance(ohm)
#Alternate approach\n",
phi_0 = math.acos(P_core/(3**0.5*V_0*I_0)) #Power factor angle(radians)
phi_0_deg = phi_0*180/math.pi #Power factor angle(degree)
R_01 = (V_0/3**0.5)/(I_0*math.cos(phi_0)) #No-load circuit resistance per phase(ohm)
X_0 = (V_0/3**0.5)/(I_0*math.sin(phi_0)) #Magnetizing reactance per phase(ohm)
#Result
print('Stator core loss , P_core = %.1f W' %P_core)
print('No-load circuit resistance per phase , R_0 = %.1f ohm' %R_01)
print('Magnetizing reactance per phase , X_0 = %.f ohm' %X_0)
#Variable declaration
P_1 = 6.0 #Number of pole
P_2 = 4.0 #Number of pole
f = 50.0 #Supply frequency(Hz)
P = 60.0 #Power(kW)
#Calculation
#For case(i)
s = P_2/(P_1+P_2) #Combined slip
#For case(ii)
N_cs = 120*f/(P_1+P_2) #Combined synchronous speed(rpm)
#For case(iii)
P_0 = P*P_2/(P_1+P_2) #Output of 4-pole motor(kW)
#Result
print('(i) Combined slip , s = %.1f ' %s)
print('(ii) Combined synchronous speed , N_cs = %.f rpm' %N_cs)
print('(iii) Output of the 4-pole motor , P_0 = %.f kW' %P_0)