import math
#Operating Conditions
m = .1; #[kg/s] mass flow rate of water
Ti = 20+273.; #[K] Inlet temp
To = 60+273.; #[K] Outlet temperature
Di = .02; #[m] Inner Diameter
Do = .04; #[m] Outer Diameter
q = 1000000.; #[w/m^3] Heat generation Rate
Tsi = 70+273.; #[K] Inner Surface Temp
#Table A.4 Air Properties T = 313 K
cp = 4179; #[J/kg.K] specific heat
#calculations
L = 4*m*cp*(To-Ti)/(math.pi*(Do*Do-Di*Di)*q);
#From Newtons Law of cooling, Equation 8.27, local heat convection coefficient is
h = q*(Do*Do-Di*Di)/(Di*4*(Tsi-To));
#results
print '%s %.1f %s' %("\n Length of tube needed to achieve the desired outlet temperature = ",L,"m ")
print '%s %.1f %s' %("\n Local convection coefficient at the outlet =",h," W/m^2.K");
#END
import math
#Operating Conditions
m = .25; #[kg/s] mass flow rate of water
Ti = 15+273.; #[K] Inlet temp
To = 57+273.; #[K] Outlet temperature
D = .05; #[m] Diameter
L = 6; #[m] Length of tube
Ts = 100+273.; #[K] outer Surface Temp
#Table A.4 Air Properties T = 309 K
cp = 4178; #[J/kg.K] specific heat
#calculations
Tlm = ((Ts-To)-(Ts-Ti))/(2.30*math.log10((Ts-To)/(Ts-Ti)));
h = m*cp*(To-Ti)/(math.pi*D*L*Tlm);
#results
print '%s %d %s' %("\n Average Heat transfer Convection Coefficient = ",h,"W/m^2.K");
#END
import math
#Operating Conditions
m = .01; #[kg/s] mass flow rate of water
Ti = 20+273; #[K] Inlet temp
To = 80+273; #[K] Outlet temperature
D = .06; #[m] Diameter
q = 2000; #[W/m^2] Heat flux to fluid
#Table A.4 Air Properties T = 323 K
cp = 4178; #[J/kg.K] specific heat
#Table A.4 Air Properties T = 353 K
k = .670; #[W/m] Thermal Conductivity
u = 352*math.pow(10,-6);#[N.s/m^2] Viscosity
Pr = 2.2; #Prandtl Number
cp = 4178; #[J/kg.K] specific heat
#calculations
L = m*cp*(To-Ti)/(math.pi*D*q);
#Using equation 8.6
Re = m*4/(math.pi*D*u);
print '%s %.2f %s' %("\n (a) Length of tube for required heating =",L,"m")
print '%s %.2f %s' %("\n\n (b)As Reynolds Number is",Re,".The flow is laminar.");
Nu = 4.364; #Nusselt Number
h = Nu*k/D; #[W/m^2.K] Heat convection Coefficient
Ts = q/h+To; #[K]
#results
print '%s %.2f %s' %("\n Surface Temperature at tube outlet = ",Ts-273,"degC");
#END
import math
#Operating Conditions
um1 = .13; #[m/s] Blood stream
um2 = 3*math.pow(10,-3); #[m/s] Blood stream
um3 = .7*math.pow(10,-3); #[m/s] Blood stream
D1 = .003; #[m] Diameter
D2 = .02*math.pow(10,-3); #[m] Diameter
D3 = .008*math.pow(10,-3); #[m] Diameter
Tlm = .05;
kf = .5; #[W/m.K] Conductivity
#Table A. Water Properties T = 310 K
rho = 993.; #[kg/m^3] density
cp = 4178.; #[J/kg.K] specific heat
u = 695*math.pow(10,-6); #[N.s/m^2] Viscosity
kb = .628; #[W/m.K] Conductivity
Pr = 4.62; #Prandtl Number
i=1.;
#calculations
#Using equation 8.6
Re1 = rho*um1*D1/u;
Nu = 4;
hb = Nu*kb/D1;
hf = kf/D1;
U1 = 1/(1/hb + 1/hf);
L1 = -rho*um1*D1/U1*cp*2.303*math.log10(Tlm)/4.;
xfdh1 = .05*Re1*D1;
xfdr1 = xfdh1*Pr;
Re2 = rho*um2*D2/u;
Nu = 4;
hb = Nu*kb/D2;
hf = kf/D2;
U2 = 1/(1/hb + 1/hf);
L2 = -rho*um2*D2/U2*cp*2.303*math.log10(Tlm)/4.;
xfdh2 = .05*Re2*D2;
xfdr2 = xfdh2*Pr;
Re3 = rho*um3*D3/u;
Nu = 4;
hb = Nu*kb/D3;
hf = kf/D3;
U3 = 1/(1/hb + 1/hf);
L3 = -rho*um3*D3/U3*cp*2.303*math.log10(Tlm)/4.;
xfdh3 = .05*Re3*D3;
xfdr3 = xfdh3*Pr;
#results
print ' %s' %("\n Vessel Re U(W/m^2.K) L(m) xfdh(m) xfdr(m)")
print '%s %.3f %d %.1e %.1e %.1e' %("\n Artery ",Re1, U1 ,L1, xfdh1 , xfdr1)
print '%s %.3f %d %.1e %.1e %.1e' %("\n Anteriole ",Re2, U2 ,L2, xfdh2 , xfdr2)
print '%s %.3f %d %.1e %.1e %.1e' %("\n Capillary ",Re3,U3,L3,xfdh3,xfdr3);
#END
import math
#Operating Conditions
m = .05; #[kg/s] mass flow rate of water
Ti = 103+273.; #[K] Inlet temp
To = 77+273.; #[K] Outlet temperature
D = .15; #[m] Diameter
L = 5; #[m] length
ho = 6.; #[W/m^2.K] Heat transfer convective coefficient
Tsurr = 0+273.; #[K] Temperature of surrounding
#Table A.4 Air Properties T = 363 K
cp = 1010; #[J/kg.K] specific heat
#Table A.4 Air Properties T = 350 K
k = .030; #[W/m] Thermal Conductivity
u = 20.82/1000000.; #[N.s/m^2] Viscosity
Pr = .7; #Prandtl Number
#calculations and results
q = m*cp*(To-Ti);
Re = m*4/(math.pi*D*u);
print '%s %d %s' %("\n As Reynolds Number is",Re,". The flow is Turbulent.");
#Equation 8.6
n = 0.3;
Nu = .023*math.pow(Re,.8)*math.pow(Pr,.3);
h = Nu*k/D;
q2 = (To-Tsurr)/(1/h + 1/ho);
Ts = -q2/h+To;
print '%s %d %s' %("\n\n Heat Loss from the Duct over the Length L, q =",q," W ")
print '%s %.1f %s %.1f %s' %("\n Heat flux and suface temperature at x=L is",q2,"W/m^2 &",Ts-273,"degC respectively");
#END
import math
#Operating Conditions
T1 = 125+273.; #[K] Chip Temperature 1
T2 = 25+273.; #[K] Chip Temperature 2
Ti = 5+273.; #[K] Inlet Temperature
D = .01; #[m] Diameter
L = .02; #[m] length
delP = 500*1000.; #[N/m^2] Pressure drop
#Dimensions
a = 40*math.pow(10,-6);
b = 160*math.pow(10,-6);
s = 40*math.pow(10,-6);
#Table A.5 Ethylene Glycol Properties T = 288 K
rho = 1120.2; #[kg/m^3] Density
cp = 2359.; #[J/kg.K] Specific Heat
u = 2.82*math.pow(10,-2); #[N.s/m^2] Viscosity
k = 247*math.pow(10,-3); #[W/m.K] Thermal Conductivity
Pr = 269; #Prandtl number
#Table A.5 Ethylene Glycol Properties T = 338 K
rho2 = 1085.; #[kg/m^3] Density
cp2 = 2583.; #[J/kg.K] Specific Heat
u2 = .427*math.pow(10,-2); #[N.s/m^2] Viscosity
k2 = 261*math.pow(10,-3); #[W/m.K] Thermal Conductivity
Pr2 = 45.2; #Prandtl number
#calculations
P = 2*a+2*b; #Perimeter of microchannel
Dh = 4*a*b/P; #Hydraulic Diameter
um2 = 2/73.*Dh*Dh/u2*delP/L;#[[m/s] Equation 8.22a
Re2 = um2*Dh*rho2/u2; #Reynolds Number
xfdh2 = .05*Dh*Re2; #[m] From Equation 8.3
xfdr2 = xfdh2*Pr2; #[m] From Equation 8.23
m2 = rho2*a*b*um2; #[kg/s]
Nu2 = 4.44; #Nusselt Number from Table 8.1
h2 = Nu2*k2/Dh; #[W/m^2.K] Convection Coeff
Tc2 = 124+273.; #[K]
xc2 = m2/P*cp2/h2*2.303*math.log10((T1-Ti)/(T1-Tc2));
tc2 = xc2/um2;
um = 2/73.*Dh*Dh/u*delP/L; #[[m/s] Equation 8.22a
Re = um*Dh*rho/u; #Reynolds Number
xfdh = .05*Dh*Re; #[m] From Equation 8.3
xfdr = xfdh*Pr; #[m] From Equation 8.23
m = rho2*a*b*um; #[kg/s]
Nu = 4.44; #Nusselt Number from Table 8.1
h = Nu*k/Dh; #[W/m^2.K] Convection Coeff
Tc = 24+273.; #[K]
xc = m/P*cp/h*2.303*math.log10((T2-Ti)/(T2-Tc));
tc = xc/um;
#results
print '%s %.1f %s' %("\nTemp in case 2= ",T2-273," [degC]")
print '%s %.1f %s' %("\nTemp in case 1= ",T1-273," [degC]")
print '%s %.3f %s' %("\nFlow rate in case 2 = ",um2,"[m/s]")
print '%s %.3f %s' %("\nFlow rate in case 1 = ",um,"[m/s]")
print '%s %.1f' %("\nReynolds number in case 2 = ",Re2)
print '%s %.1f' %("\nReynolds number in case 1 = ",Re)
print '%s %.1f' %("\nHydrodynamic entrance Length [m] =",xfdh)
print '%s %.1f' %("\nHydrodynamic entrance Length in case 2 [m] =",xfdh2)
print '%s %.1e' %("\nThermal entrance Length [m] = ",xfdr)
print '%s %.1e' %("\nThermal entrance Length in case 2 [m] = ",xfdr2)
print '%s %.2e' %("\nMass Flow rate [kg/s] = ",m)
print '%s %.2e' %("\nMass Flow rate in case 2 [kg/s] = ",m2)
print '%s %.2e' %("\nConvective Coeff [W/m^2.K] = ",h)
print '%s %.2e' %("\nConvective Coeff in case 2 [W/m^2.K] = ",h2)
print '%s %.2e' %("\nTransition Length [m] = ",xc)
print '%s %.2e' %("\nTransition Length in case 2 [m] = ",xc2)
print '%s %.3f' %("\nRequired Time [s] = ",tc)
print '%s %.3f' %("\nRequired Time in case 2 [s] = ",tc2)
#END
import math
#Operating Conditions
m = .0003; #[kg/s] mass flow rate of water
T = 25+273; #[K] Temperature of surrounding and tube
D = .01; #[m] Diameter
L = 1; #[m] length
#calculations and results
#Table A.4 Air Properties T = 298 K
uv = 15.7*math.pow(10,-6); #[m^2/s] Kinematic Viscosity
u = 18.36*math.pow(10,-6); #[N.s/m^2] Viscosity
#Table A.8 Ammonia-Air Properties T = 298 K
Dab = .28*math.pow(10,-4); #[m^2/s] Diffusion coeff
Sc = .56;
Re = m*4/(math.pi*D*u);
print '%s %d %s' %("\n As Reynolds Number is",Re,". The flow is Laminar.");
#Using Equation 8.57
Sh = 1.86*math.pow((Re*Sc*D/L),.3334);
h = Sh*Dab/D;
print '%s %.3f %s' %("\n Average mass trasnfer convection coefficient for the tube",h,"m/s");
#END