a=0.1 #plate area
b=3 #flux density
d=0.5 #distence between plates
v=1000 #average gas velosity
c=10 #condectivity
e=b*v*d
ir=d/(c*a) #internal resistence
mapo=e**2/(4*ir) #maximum power output
print "E=%dV \ninternal resistence %.1fohm \nmaximum power output %dW =%.3fMW"%(e,ir,mapo,mapo/10**6)
b=4.2 #flux density
v=600 #gas velocity
d=0.6 #dimension of plate
k=0.65 #constent
e=b*v*d #open circuit voltage
vg=e/d #voltage gradient
v=k*e #voltage across load
vgg=v/d #voltage gradient due to load voltage
print " voltage E=%dV \n voltage gradient %dV/m \n voltage across load %.1fV \n voltage gradient due to load voltage %dv"%(e,vg,v,vgg)
b=4.2 #flux density
v=600 #gas velocity
d=0.6 #dimension of plate
k=0.65 #constent
sl=0.6 #length given
sb=0.35 #breath given
sh=1.7 #height given
c=60 #given condectivity
e=b*v*d #open circuit voltage
vg=e/d #voltage gradient
v=k*e #voltage across load
vgg=v/d #voltage gradient due to load voltage
rg=d/(c*sb*sh)
vd=e-v #voltage drop in duct
i=vd/rg #current due to voltage drop in duct
j=i/(sb*sh) #current density
si=e/(rg) #short circuit current
sj=si/(sb*sh) #short circuit current density
pd=j*vg #power density
p=pd*sl*sh*sb #power
pp=e*i #also power
pde=v*i #power delevered is V*i
los=p-pde #loss
eff=pde/p #efficiency
maxp=e**2/(4*rg)
print " resistence of duct %fohms \n voltage drop in duct %.1fV \n current %.1fA \n current density %fA/m**2 \n short circuit current %.1fA \n short current density %fA/m**2 \n power %fMW \n power delivered to load %fW \n loss in duct %fW \n efficiency is %f \n maximum power delivered to load %dMW"%(rg,vd,i,j,si,sj,p/10**6,pde/10**6,los/10**6,eff,maxp/10**6)
c=50 #conduntance
a=0.2 #area
d=0.24 #distence between electrodes
v=1800 #gas velosity
b=1 #flux density
k=0.7
ov=k*b*v*d
tp=c*d*a*b**2*v**2*(1-k)
eff=k
op=eff*tp
e=b*v*d
rg=d/(c*a)
si=e/rg
maxp=e**2/(4*rg)
print " output voltage %.1fV \n total power %.4fMW \n efficiency %.1f \n output power %fMW \n open circuit voltage %dV \n internal resistence %.3fohm \n short circuit current %dA \n maximum power output is %.3fMW"%(ov,tp/10**6,eff,op/10**6,e,rg,si,maxp/10**6)
from math import cos, pi
a=100 #area
spd=0.7 #sun light power density
m=1000 #weight of water collector
tp=30 #temperature of water
th2=60 #angle of incidence
cp=4186 #specific heat of water
sp=spd*cos(th2*pi/180)*a #solar power collected by collector
ei=sp*3600*10**3 #energy input in 1 hour
temp=ei/(cp*10**3)
tw=tp+temp
print " solar power collected by collector %dkW \n energy input in one hour %e J \n rise in temperature is %.1f`C \n temperature of water %.1f`c"%(sp,ei,temp,tw)
from math import sqrt, ceil
vo=100 #motor rated voltage
efm=0.4 #efficiency of motor pump
efi=0.85 #efficiency of inverter
h=50 #head of water
v=25 #volume of water per day
ov=18 #pv pannel output module
pr=40 #power rating
ao=2000 #annual output of array
dw=1000 #density of water
en=v*dw*h*9.81 #energy needed to pump water every day
enkw=en/(3.6*10**6) #energy in kilo watt hour
oe=efm*efi #overall efficiency
epv=round(enkw/oe) #energy out of pv system
de=ao/365 #daily energy output
pw=epv*10**3/de #peak wattage of pv array
rv=vo*(pi)/sqrt(2) #rms voltage
nm=rv/ov #number of modules in series
nm=ceil(nm)
rpp=nm*pr #rated peak power output
np=pw/rpp #number of strings in parallel
np=round(np)
print " energy needed o pump water every day %fkWh/day \n overall efficiency %.2f \n energy output of pv system %dkWh/day "%(enkw,oe,epv)
print "\n annual energy out of array %dWh/Wp \n daily energy output of array %.3fWh/Wp \n peak wattage of pv array %.2fWp \n rms output voltage %.2fV\n number of modules in series %d \n rated peak power output of each string %.2fW \n number of strings in parallel %d"%(epv,de,pw,rv,nm,rpp,np)
from __future__ import division
from math import cos, pi
ws=20 #wind speed
rd=10 #rotor diameter
ros=30 #rotor speed
ad=1.293 #air density
mc=0.593 #maximum value of power coefficient
p1=0.5*ad*(pi)*(rd**2)*(ws**3)/4 #power
p=p1/10**3
pd=p/((pi)*(rd/2)**2) #power density
pm=p*(mc) #maximum power
mt=(pm*10**3)/((pi)*rd*(ros/60))
print " power %.fkW \n power density %.3fkW/m**3 \n maximum power %fkW \n maximum torque %.1fN-m"%(p,pd,pm,mt)
cp=0.593
d=1.293
s=15
a=2/3
dp=2*d*(s**2)*a*(1-a)
dlp=760*dp/(101.3*10**3) #760 mmhg=101.3*10**3pascal then pressure in mm of hg
dpa=dlp/760 #pressure in atmosphere
print "pressure in pascal %.1fpascal \npressure in height of mercury %.2fmm-hg \npressure in atmosphere %.5fatm"%(dp,dlp,dpa)
from math import floor
ng=50 #number of generator
r=30 #rated power
mah=10 #maximum head
mih=1 #minimum head
tg=12 #duration of generation
efg=0.9 #efficiency of generated
g=9.81 #gravity
le=5 #lenght of embankment
ro=1025 #density
ti=r/(0.9)**2
q=ti*10**(6)/(ro*g*mah) #maximum input
q=floor(q*10**2)/10**2
qw=q*ng #total quantity of water
tcr=qw*tg*3600/2 #total capacity of resevoir
sa=tcr/mah #surface area
wbe=sa/(le*10**6) #wash behind embankment
avg=r/2
te=avg*tg*365*ng #total energy output
print "quantity of water for maximum output %fm**3-sec "%(q)
print "\nsurface area of reservoir %fkm**3 "%(sa/10**6)
print "\nwash behind embankment %fkm \ntotal energy output %eMWh"%(wbe,te)
print "area of reservoir %fkm**3 "%(sa/10**6)
print "\nwash behind embankment %fkm \ntotal energy output %eMWh"%(wbe,te)
tc=2100 #total capacity of plant
n=60 #number of generaed
p=35 #power of generated by each generator
h=10 #head of water
d=12 #duration of generation
cee=2.1 #cost of electrical energy per kWh
efft=0.85 #efficiency of turbine
effg=0.9 #efficiency of generator
g=9.81 #gravity
ro=1025 #density
acc=0.7 #assuming coal conumotion
pi=p/(efft*effg) #power input
q=pi*10**6/(h*g*ro) #quantity of water
tqr=q*n*d*3600/2 #total quantity of water in reservoir
avp=tc/2 #average output during 12h
toe=avp*d #total energy in 12 hours
eg=toe*365 #energy generated for totel year
coe=eg*cee*10**3 #cost of electrical energy generated
sc=eg*10**3*acc #saving cost
print "total quantity of water in reservoir %em**3 \nenergy generated per year %eMW \ncost of electrical energy Rs%e \nsaving in cost Rs.%e "%(tqr,eg,coe,sc)