Ch-15, New Energy Sources

example 15.1 Page 345

In [3]:
a=0.1  #plate area
b=3    #flux density
d=0.5  #distence between plates
v=1000  #average gas velosity
c=10    #condectivity
e=b*v*d
ir=d/(c*a)  #internal resistence
mapo=e**2/(4*ir) #maximum power output
print "E=%dV \ninternal resistence %.1fohm \nmaximum power output %dW =%.3fMW"%(e,ir,mapo,mapo/10**6)
E=1500V 
internal resistence 0.5ohm 
maximum power output 1125000W =1.125MW

example 15.2 Page 345

In [4]:
b=4.2 #flux density
v=600  #gas velocity
d=0.6  #dimension of plate
k=0.65  #constent
e=b*v*d #open circuit voltage
vg=e/d  #voltage gradient
v=k*e   #voltage across load
vgg=v/d  #voltage gradient due to load voltage
print " voltage E=%dV \n voltage gradient %dV/m \n voltage across load %.1fV \n voltage gradient due to load voltage %dv"%(e,vg,v,vgg)
 voltage E=1512V 
 voltage gradient 2520V/m 
 voltage across load 982.8V 
 voltage gradient due to load voltage 1638v

example 15.3 Page 346

In [5]:
b=4.2 #flux density
v=600  #gas velocity
d=0.6  #dimension of plate
k=0.65  #constent
sl=0.6  #length given
sb=0.35  #breath given
sh=1.7   #height given
c=60     #given condectivity
e=b*v*d #open circuit voltage
vg=e/d  #voltage gradient
v=k*e   #voltage across load
vgg=v/d  #voltage gradient due to load voltage
rg=d/(c*sb*sh)
vd=e-v #voltage drop in duct
i=vd/rg  #current due to voltage drop in duct
j=i/(sb*sh) #current density
si=e/(rg)  #short circuit current
sj=si/(sb*sh)  #short circuit current density
pd=j*vg     #power density
p=pd*sl*sh*sb #power 
pp=e*i  #also power
pde=v*i  #power delevered is V*i
los=p-pde  #loss
eff=pde/p  #efficiency
maxp=e**2/(4*rg)
print " resistence of duct %fohms \n voltage drop in duct %.1fV \n current %.1fA \n current density %fA/m**2 \n short circuit current %.1fA \n short current density %fA/m**2 \n power %fMW \n power delivered to load %fW \n loss in duct %fW \n efficiency is %f \n maximum power delivered to load %dMW"%(rg,vd,i,j,si,sj,p/10**6,pde/10**6,los/10**6,eff,maxp/10**6) 
 resistence of duct 0.016807ohms 
 voltage drop in duct 529.2V 
 current 31487.4A 
 current density 52920.000000A/m**2 
 short circuit current 89964.0A 
 short current density 151200.000000A/m**2 
 power 47.608949MW 
 power delivered to load 30.945817W 
 loss in duct 16.663132W 
 efficiency is 0.650000 
 maximum power delivered to load 34MW

example 15.4 Page 347

In [6]:
c=50 #conduntance
a=0.2 #area
d=0.24 #distence between electrodes
v=1800 #gas velosity
b=1 #flux density
k=0.7 
ov=k*b*v*d
tp=c*d*a*b**2*v**2*(1-k)
eff=k
op=eff*tp
e=b*v*d
rg=d/(c*a)
si=e/rg
maxp=e**2/(4*rg)
print " output voltage %.1fV \n total power %.4fMW \n efficiency %.1f \n output power %fMW \n open circuit voltage %dV \n internal resistence %.3fohm \n short circuit current %dA \n maximum power output is %.3fMW"%(ov,tp/10**6,eff,op/10**6,e,rg,si,maxp/10**6)
 output voltage 302.4V 
 total power 2.3328MW 
 efficiency 0.7 
 output power 1.632960MW 
 open circuit voltage 432V 
 internal resistence 0.024ohm 
 short circuit current 18000A 
 maximum power output is 1.944MW

example 15.5 Page 363

In [7]:
from math import cos, pi
a=100 #area
spd=0.7 #sun light power density
m=1000  #weight of water collector
tp=30  #temperature of water
th2=60  #angle of incidence
cp=4186 #specific heat of water
sp=spd*cos(th2*pi/180)*a #solar power collected by collector
ei=sp*3600*10**3  #energy input in 1 hour
temp=ei/(cp*10**3)
tw=tp+temp
print " solar power collected by collector %dkW \n energy input in one hour %e J \n rise in temperature is %.1f`C \n temperature of water %.1f`c"%(sp,ei,temp,tw)
 solar power collected by collector 35kW 
 energy input in one hour 1.260000e+08 J 
 rise in temperature is 30.1`C 
 temperature of water 60.1`c

example 15.6 Page 364

In [8]:
from math import sqrt, ceil
vo=100 #motor rated voltage
efm=0.4 #efficiency of motor pump
efi=0.85 #efficiency of inverter
h=50 #head of water
v=25 #volume of water per day
ov=18 #pv pannel output module
pr=40 #power rating
ao=2000 #annual output of array
dw=1000 #density of water
en=v*dw*h*9.81 #energy needed to pump water every day
enkw=en/(3.6*10**6)  #energy in kilo watt hour
oe=efm*efi  #overall efficiency
epv=round(enkw/oe)  #energy out of pv system
de=ao/365  #daily energy output
pw=epv*10**3/de  #peak wattage of pv array
rv=vo*(pi)/sqrt(2)  #rms voltage
nm=rv/ov  #number of modules in series
nm=ceil(nm)
rpp=nm*pr #rated peak power output
np=pw/rpp #number of strings in parallel
np=round(np)
print " energy needed o pump water every day %fkWh/day \n overall efficiency %.2f \n energy output of pv system %dkWh/day "%(enkw,oe,epv)
print "\n annual energy out of array %dWh/Wp \n daily energy output of array %.3fWh/Wp \n peak wattage of pv array %.2fWp \n rms output voltage %.2fV\n number of modules in series %d \n rated peak power output of each string %.2fW \n number of strings in parallel %d"%(epv,de,pw,rv,nm,rpp,np)
 energy needed o pump water every day 3.406250kWh/day 
 overall efficiency 0.34 
 energy output of pv system 10kWh/day 

 annual energy out of array 10Wh/Wp 
 daily energy output of array 5.000Wh/Wp 
 peak wattage of pv array 2000.00Wp 
 rms output voltage 222.14V
 number of modules in series 13 
 rated peak power output of each string 520.00W 
 number of strings in parallel 4

example 15.7 Page 373

In [9]:
from __future__ import division
from math import cos, pi
ws=20 #wind speed
rd=10 #rotor diameter
ros=30 #rotor speed
ad=1.293 #air density
mc=0.593 #maximum value of power coefficient
p1=0.5*ad*(pi)*(rd**2)*(ws**3)/4 #power
p=p1/10**3
pd=p/((pi)*(rd/2)**2)  #power density
pm=p*(mc)  #maximum power
mt=(pm*10**3)/((pi)*rd*(ros/60))
print " power %.fkW \n power density %.3fkW/m**3 \n maximum power %fkW \n maximum torque %.1fN-m"%(p,pd,pm,mt)
 power 406kW 
 power density 5.172kW/m**3 
 maximum power 240.881303kW 
 maximum torque 15335.0N-m

example 15.8 Page 373

In [10]:
cp=0.593
d=1.293
s=15
a=2/3
dp=2*d*(s**2)*a*(1-a)
dlp=760*dp/(101.3*10**3) #760 mmhg=101.3*10**3pascal then pressure in mm of hg
dpa=dlp/760 #pressure in atmosphere
print "pressure in pascal %.1fpascal \npressure in height of mercury %.2fmm-hg \npressure in atmosphere %.5fatm"%(dp,dlp,dpa)
pressure in pascal 129.3pascal 
pressure in height of mercury 0.97mm-hg 
pressure in atmosphere 0.00128atm

example 15.9 Page 385

In [11]:
from math import floor
ng=50 #number of generator
r=30  #rated power 
mah=10 #maximum head
mih=1  #minimum head
tg=12  #duration of generation
efg=0.9  #efficiency of generated
g=9.81   #gravity
le=5   #lenght of embankment
ro=1025 #density
ti=r/(0.9)**2
q=ti*10**(6)/(ro*g*mah) #maximum input
q=floor(q*10**2)/10**2
qw=q*ng  #total quantity of water
tcr=qw*tg*3600/2  #total capacity of resevoir
sa=tcr/mah   #surface area 
wbe=sa/(le*10**6)  #wash behind embankment
avg=r/2
te=avg*tg*365*ng  #total energy output
print "quantity of water for maximum output %fm**3-sec "%(q)
print "\nsurface area of reservoir %fkm**3 "%(sa/10**6)
print "\nwash behind embankment %fkm \ntotal energy output %eMWh"%(wbe,te) 

print "area of reservoir %fkm**3 "%(sa/10**6)
print "\nwash behind embankment %fkm \ntotal energy output %eMWh"%(wbe,te) 
quantity of water for maximum output 368.330000m**3-sec 

surface area of reservoir 39.779640km**3 

wash behind embankment 7.955928km 
total energy output 3.285000e+06MWh
area of reservoir 39.779640km**3 

wash behind embankment 7.955928km 
total energy output 3.285000e+06MWh

example 15.10 Page 385

In [12]:
tc=2100  #total capacity of plant
n=60     #number of generaed
p=35     #power of generated by each generator
h=10     #head of water
d=12     #duration of generation
cee=2.1  #cost of electrical energy per kWh
efft=0.85 #efficiency of turbine
effg=0.9  #efficiency of generator
g=9.81   #gravity
ro=1025   #density
acc=0.7   #assuming coal conumotion
pi=p/(efft*effg) #power input
q=pi*10**6/(h*g*ro) #quantity of water
tqr=q*n*d*3600/2  #total quantity of water in reservoir
avp=tc/2 #average output during 12h
toe=avp*d  #total energy in 12 hours
eg=toe*365 #energy generated for totel year
coe=eg*cee*10**3 #cost of electrical energy generated
sc=eg*10**3*acc #saving cost 
print "total quantity of water in reservoir %em**3 \nenergy generated per year %eMW \ncost of electrical energy Rs%e \nsaving in cost Rs.%e "%(tqr,eg,coe,sc)
total quantity of water in reservoir 5.896832e+08m**3 
energy generated per year 4.599000e+06MW 
cost of electrical energy Rs9.657900e+09 
saving in cost Rs.3.219300e+09