Chapter 25 : Resonance

Example No. 25_1 Page No. 775

In [1]:
from math import pi,sqrt
# Calculate the resonant frequency for an 8-H inductance and a 20-uF capacitance.

# Given data

L = 8.#              # L=8 Henry
C = 20.*10**-6#       # C=20 uFarad

fr = 1./(2.*pi*sqrt(L*C))#
print 'The resonant frequency = %0.2f Hertz'%fr
print 'approx 12.6 Hertz'
The resonant frequency = 12.58 Hertz
approx 12.6 Hertz

Example No. 25_2 Page No. 776

In [2]:
# Calculate the resonant frequency for a 2-uH inductance and a 3-pF capacitance.

# Given data

L = 2.*10**-6#       # Inductor=2 uHenry
C = 3.*10**-12#      # Capacitor=3 pFarad
pi = 3.14#

fr = 1./(2.*pi*sqrt(L*C))#
print 'The resonant frequency = %0.2f Hertz'%fr
print 'i.e 65 MHz'
The resonant frequency = 65007689.56 Hertz
i.e 65 MHz

Example No. 25_3 Page No. 778

In [3]:
from math import pi
# What value of C resonates with a 239-uH L at 1000 kHz?

# Given data

L = 239.*10**-6#      # Inductor=239 uHenry
fr = 1000.*10**3#     # Resonant frequency=1000 kHertz

A = pi*pi#          # pi square
B = fr*fr#          # Resonant frequency square

C = 1./(4.*A*B*L)#
print 'The value of Capacitor = %0.2e Farads'%C
print 'i.e 106 pF'
The value of Capacitor = 1.06e-10 Farads
i.e 106 pF

Example No. 25_4 Page No. 781

In [5]:
from math import pi
# What value of L resonates with a 106-pF C at 1000 kHz, equal to 1 MHz?

# Given data

C = 106.*10**-12#     # Capacitor=106 pFarad
fr = 1.*10**6#        # Resonant frequency=1 MHertz

A = pi*pi#          # pi square
B = fr*fr#          # Resonant frequency square

C = 1./(4*A*B*C)#
print 'The value of Inductor = %.2e Henry'%C
print 'i.e 239 uF'
The value of Inductor = 2.39e-04 Henry
i.e 239 uF

Example No. 25_5 Page No. 782

In [7]:
# A series circuit resonant at 0.4 MHz develops 100 mV across a 250-uH L with a 2-mV input. Calculate Q .

# Given data

Vo = 100.*10**-3#     # Output voltage=100 mVolts
Vi = 2*10**-3#       # Input voltage=2 mVolts
L = 250*10**-6#      # Inductor=250 uHenry
f = 0.4*10**6#       # Frequency=0.4 MHertz

Q = Vo/Vi#
print 'The Magnification factor Q =%0.2f'%Q
The Magnification factor Q =50.00

Example No. 25_6 Page No. 784

In [8]:
from math import pi
# What is the ac resistance of the coil in A series circuit resonant at 0.4 MHz develops 100 mV across a 250-uH L with a 2-mV input.

# Given data

Vo = 100.*10**-3#     # Output voltage=100 mVolts
Vi = 2.0*10**-3#       # Input voltage=2 mVolts
L = 250.0*10**-6#      # Inductor=250 uHenry
f = 0.4*10**6#       # Frequency=0.4 MHertz

Q = Vo/Vi#
Xl = 2*pi*f*L#

rs = Xl/Q#
print 'The Ac Resistance of Coil = %0.2f Ohms'%rs
The Ac Resistance of Coil = 12.57 Ohms

Example No. 25_7 Page No. 785

In [10]:
# In Fig. 25–9, assume that with a 4-mVac input signal for VT, the voltage across R1 is 2 mV when R1 is 225-kOhms. Determine Zeq and Q.

# Given data

vin = 4.*10**-3#      # Input AC signal=4 mVac
R1 = 225.*10**3#      # Resistance1=225 kOhms
vR1 = 2.*10**-3#      # Voltage across Resistor1=2 mVac
xl = 1.5*10**3#      # Inductive Reactance=1.5 kOhms

print 'Because they divide Vt equally'

Zeq = R1#
print 'The Equivalent Impedence = %0.f Ohms'%Zeq
print 'i.e 225 kOhms'

Q = Zeq/xl#
print 'The Q =%0.2f'%Q
Because they divide Vt equally
The Equivalent Impedence = 225000 Ohms
i.e 225 kOhms
The Q =150.00

Example No. 25_8 Page No. 786

In [12]:
from math import pi
# A parallel LC circuit tuned to 200 kHz with a 350-uH L has a measured ZEQ of 17,600. Calculate Q.

# Given data

L = 350.*10**-6#      # Inductor=350 uHenry
f = 200.*10**3#       # Frequency=200 kHertz
Zeq = 17600.#        # Equivalent Impedence=17600 Ohms

Xl = 2*pi*f*L#

Q = Zeq/Xl#
print 'The Magnification factor Q = %0.2f'%Q
The Magnification factor Q = 40.02

Example No. 25_9 Page No. 788

In [14]:
# An LC circuit resonant at 2000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.

# Given data

fr = 2000.*10**3#         # Resonant frequency=2000 kHertz
Q = 100.#                # Magnification factor=100

Bw = fr/Q#
print 'The Bandwidth BW or Delta f = %0.f Hertz'%Bw
print 'i.e 20 kHz'

f1 = fr-Bw/2#
print 'The Edge Frequency f1 = %0.f Hertz'%f1
print 'i.e 1990 kHz'

f2 = fr+Bw/2#
print 'The Edge Frequency f2 = %0.f Hertz'%f2
print 'i.e 2010 kHz'
The Bandwidth BW or Delta f = 20000 Hertz
i.e 20 kHz
The Edge Frequency f1 = 1990000 Hertz
i.e 1990 kHz
The Edge Frequency f2 = 2010000 Hertz
i.e 2010 kHz

Example No. 25_10 Page No. 789

In [16]:
# An LC circuit resonant at 6000 kHz has a Q of 100. Find the total bandwidth delta f and the edge frequencies f1 and f2.

# Given data

fr = 6000.*10**3#         # Resonant frequency=6000 kHertz
Q = 100.#                # Magnification factor=100

Bw = fr/Q#
print 'The Bandwidth BW or Delta f = %0.f Hertz'%Bw
print 'i.e 60 kHz'

f1 = fr-Bw/2#
print 'The Edge Frequency f1 = %0.f Hertz'%f1
print 'i.e 5970 kHz'

f2 = fr+Bw/2.0#
print 'The Edge Frequency f2 = %0.f Hertz'%f2
print 'i.e 6030 kHz'
The Bandwidth BW or Delta f = 60000 Hertz
i.e 60 kHz
The Edge Frequency f1 = 5970000 Hertz
i.e 5970 kHz
The Edge Frequency f2 = 6030000 Hertz
i.e 6030 kHz