# For the diode curve, calculate the dc resistance, RF, at points A and B.
# Given data
Vf1 = 0.65# # Forward votage 1=0.65 Volts
If1 = 11*10**-3 # Forward current 1=11 mAmps
Vf2 = 0.7# # Forward votage 2=0.7 Volts
If2 = 22.5*10**-3 # Forward current 2=22.5 mAmps
Rf1 = Vf1/If1#
print 'The Forward Resistance at Point A = %0.2f Ohms'%Rf1
print 'Approx 59.1 Ohms'
Rf2 = Vf2/If2#
print 'The Forward Resistance at Point B = %0.2f Ohms'%Rf2
# A silicon diode has a forward voltage drop of 1.1 V for a forward diode current, If, of 1 A. Calculate the bulk resistance, Rb.
# Given data
Vf1 = 1.1# # Forward votage 1=1.1 Volts
If1 = 1. # Forward current 1=1 Amps
Vf2 = 0.7# # Fwd. vltg. 2=0.7 Volts (min working vltg of diode is 0.7 V)
If2 = 0 # Forward current=0 Amps
delV = Vf1-Vf2# # diff. between max. min. Voltages
delI = If1-If2# # diff. between max. min. Currents
Rb = delV/delI#
print 'The Bulk Resistance = %0.2f Ohms'%Rb
# Solve for the load voltage and current using the first, second, and third diode approximations.
# Given data
Rl = 100.# # Load resistance=100 Ohms
Rb = 2.5# # Resistance=2.5 Ohms
Vin = 10.# # Input voltage=10 Volts
Vb = 0.7# # Voltage=0.7 Volts
# Using first approximation
Vl1 = Vin
print 'The Load Voltage of First Approximation = %0.2f Volts(dc)'%Vl1
Il1 = Vl1/Rl#
print 'The Load Current of First Approximation = %0.2f Amps'%Il1
print 'i.e 100 mAmps'
# Using second approximation
Vl2 = Vin-Vb
print 'The Load Voltage of Second Approximation = %0.2f Volts'%Vl2
Il2 = Vl2/Rl#
print 'The Load Current of Second Approximation = %0.2f Amps'%Il2
print 'i.e 93 mAmps'
# Using third approximation
Il3 = (Vin-Vb)/(Rl+Rb)#
print 'The Load Current of Third Approximation = %0.2f Amps'%Il3
print 'i.e 90.73 mAmps'
Vl3 = Il3*Rl#
print 'The Load Voltage of Third Approximation %0.2f Volts'%Vl3
# If the turns ratio Np:Ns is 3:1, calculate the following: Vs, Vdc, Il, Idiode, PIV for D1, and fout.
# Given data
Vp = 120.# # Primary voltage=120 Vac
A = 3/1.# # Turns ratio Np:Ns=3:1
B = 1/3.# # Turns ratio Ns:Np=1:3
Rl = 100.# # Load resistance=100 Ohms
fi = 60.# # Input frequency=60
Vs = B*Vp#
print 'The Secondary Voltage = %0.2f Volts(ac)'%Vs
Vspk = (Vs*1.414)#
C = Vspk-0.7#
Vdc = 0.318*C#
print 'The DC Voltage = %0.2f Volts'%Vdc
Il = Vdc/Rl#
print 'The Load Current = %0.2f Amps'%Il
Idiode = Il#
print 'The DC Diode Current = %0.2f Amps'%Idiode
PIV = Vspk#
print 'The PIV for Diode-1 = %0.2f Volts'%PIV
fo =fi#
print 'The Output Frequency = %0.2f Hertz'%fo
# If the turns ratio Np:Ns is 3:1, calculate the following: Vdc, Il, Idiode, PIV for D1, and fout.
# Given data
Vp = 120. # Primary voltage=120 Vac
A = 3/1. # Turns ratio Np:Ns = 3:1
B = 1/3. # Turns ratio Ns:Np = 1:3
Rl = 100. # Load resistance=100 Ohms
Vs = B*Vp#
Vspk = 1.414*(Vs/2)#
Vopk = Vspk-0.7#
Vdc = 0.636*Vopk#
print 'The DC Voltage = %0.2f Volts'%Vdc
Il = Vdc/Rl#
print 'The Load Current = %0.2f Amps'%Il
print 'i.e 175.4 mAmps'
Idiode = Il/2#
print 'The DC Diode Current = %0.2f Amps'%Idiode
print 'i.e 87.7 mAmps'
C = (Vspk*2)-0.7#
PIV = C#
print 'The PIV for Diode-1 = %0.2f Volts'%PIV
f =120#
print 'The Output Frequency = %0.2f Hertz'%f
# If the turns ratio Np:Ns is 3:1, calculate the following: Vdc, Il, Idiode, PIV for each diode, and fout.
# Given data
Vp = 120.# # Primary voltage=120 Vac
A = 3./1# # Turns ratio Np:Ns = 3:1
B = 1./3# # Turns ratio Ns:Np = 1:3
Rl = 100.# # Load resistance=100 Ohms
Vs = B*Vp#
Vspk = 1.414*(Vs)#
Vopk = Vspk-1.4#
Vdc = 0.636*Vopk#
print 'The DC Voltage = %0.2f Volts'%Vdc
Il = Vdc/Rl#
print 'The Load Current = %0.2f Amps'%Il
print 'i.e 350.8 mAmps'
Idiode = Il/2#
print 'The DC Diode Current = %0.4f Amps'%Idiode
print 'i.e 175.4 mAmps'
C = Vspk-0.7#
PIV = C#
print 'The PIV for each Diode = %0.2f Volts'%PIV
f =120#
print 'The Output Frequency = %0.2f Hertz'%f
from math import exp
# Assume the transformer turns ratio Np:Ns = 4:1 in Fig. 27–21 a and 2:1 in Fig. 27–22a. Compare Vripple and Vdc if C = 500 uF and Rl = 250.
# Given data
A1 = 4./1# # Turns ratio Np:Ns=4:1
B1 = 1./4# # Turns ratio Ns:Np=1:4
A2 = 2./1# # Turns ratio Np:Ns=2:1
B2 = 1./2# # Turns ratio Ns:Np=1:2
Vp = 120.# # Primary voltage=120 Vac
Vb = 0.7# #
t1 = 16.67*10**-3# # Charging Time of Capacitor of Turns ratio Np:Ns=4:1=16.67 mSec
t2 = 8.33*10**-3# # Charging Time of Capacitor of Turns ratio Np:Ns=4:1=8.33 mSec
Rl = 250.# # Load resistance=250 Ohms
C = 500.*10**-6# # Capacitor=500 uFarad
# Calculations for Turns Ratio Np:Ns=4:1
Vs1 = B1*Vp#
Vspk1 = Vs1*1.414#
Vopk1 = Vspk1 - Vb#
D = -t1/(Rl*C)#
Vrp1 = Vopk1*(1-exp(D))#
print 'The Ripple Voltage for Turns Ratio Np:Ns=4:1 = %0.2f Volts(p-p)'%Vrp1
print 'Approx 5.21 Volts(p-p)'
Vdc1 = Vopk1-(Vrp1/2)#
print 'The DC Voltage for Turns Ratio Np:Ns=4:1 = %0.2f Volts'%Vdc1
print 'Approx 39.12 Volts'
# Calculations for Turns Ratio Np:Ns = 2:1
Vs2 = B2*Vp#
V2 = Vs2/2#
V2pk2 = V2*1.414
Vopk2 = V2pk2 - Vb#
E = -t2/(Rl*C)#
Vrp2 = Vopk2*(1-(exp(E)))
print 'The Ripple Voltage for Turns Ratio Np:Ns=2:1 = %0.2f Volts(p-p)'%Vrp2
print 'Approx 2.69 Volts(p-p)'
Vdc2 = Vopk2-(Vrp2/2)#
print 'The DC Voltage for Turns Ratio Np:Ns=2:1 = %0.2f Volts'%Vdc2
print 'Approx 40.38 Volts'
# Calculate the LED current.
# Given data
Vin = 24.# # Input voltage=24 Volts
Vled = 2.# # Voltage drop at LED=2 Volts
Rs = 2.2*10**3# # Source Resistance=2.2 kOhms
Iled = (Vin-Vled)/Rs#
print 'The LED Current = %0.2f Amps'%Iled
print 'i.e 10 mAmps'
# Calculate the resistance Rs, required to provide an LED current of 25 mA.
# Given data
Vin = 24.# # Input voltage=24 Volts
Vled = 2.# # Voltage drop at LED=2 Volts
Iled = 25.*10**-3# # LED Current=25 mAmps
Rs = (Vin-Vled)/Iled#
print 'The Resistance Rs, Required to Provide an LED Current of 25 mA = %0.2f Ohms'%Rs
# Calculate the maximum rated zener current for a 1 W, 10 V zener.
# Given data
Pzm = 1.# # Power rating of zener= 1 Watts
Vz = 10.# # Voltage rating of zener= 10 Volts
Izm = Pzm/Vz#
print 'The Maximum Rated Current of Zener = %0.2f Amps'%Izm
print 'i.e 100 mAmps'
# If Vz=10 V, calculate Iz.
# Given data
Vin = 25.# # Input voltage=25 Volts
Vz = 10.# # Zener voltage=10 Volts
Rs = 1.*10**3# # Source Resistance=1 kOhms
Iz = (Vin-Vz)/Rs#
print 'The Zener Current = %0.2f Amps'%Iz
print 'i.e 15 mAmps'
# If R L increases to 250 Ohms, calculate the following: Is, Il, Iz, and Pz.
# Given data
Vin = 25# # Input voltage=25 Volts
Vz = 7.5# # Zener voltage=7.5 Volts
Rl = 250# # Load Resistance=250 Ohms
Is = 75*10**-3# # Source current=75 mAmps
print 'The Source Current = %0.3f Amps'%Is
print 'i.e 75 mAmps'
Il = Vz/Rl#
print 'The Load Current = %0.2f Amps'%Il
print 'i.e 30 mAmps'
Iz = Is-Il#
print 'The Zener Current = %0.3f Amps'%Iz
print 'i.e 45 mAmps'
Pz = Vz*Iz#
print 'The Power Dissipation of Zener = %0.4f Watts'%Pz
print 'i.e 337.5 mWatts'
# Calculate Is, Il and Iz for (a)Rl=200 ohms# (b)Rl=500 ohms.
# Given data
Vin = 16.# # Vin=16 Volts given
Vz = 10.# # Vz=10 Volts given
Rs = 100.# # Source Resistance = 100 ohms given
Rla = 200.# # Load Resistance A = 200 ohms given
Rlb = 500.# #Load Resistance B = 500 ohms given
# For Rl 200 ohms
Is = (Vin-Vz)/Rs#
print 'The Source Current = %0.2f Amps.'%Is
print 'i.e 60 mAmps'
Ila = Vz/Rla#
print 'The Load Current for 200 ohms Load = %0.2f Amps.'%Ila
print 'i.e 50 mAmps'
Iza = Is-Ila
print 'The Zener Current for 200 ohms Load = %0.2f Amps.'%Iza
print 'i.e 10 mAmps'
# For Rl 500 ohms
Ilb = Vz/Rlb#
print 'The Load Current for 500 ohms Load = %0.2f Amps.'%Ilb
print 'i.e 20 mAmps'
Izb = Is-Ilb
print 'The Zener Current for 500 ohms load = %0.2f Amps.'%Izb
print 'i.e 40 mAmps'