Chapter 28 : Bipolar Junction Transistors

Example No. 28_1 Page No. 910

In [1]:
# A transistor has the following currents: Ib is 20 mA and Ic is 4.98 A. Calculate Ie.

# Given data

Ib = 20*10**-3#      # Base current=20 mAmps
Ic = 4.98#          # Collector current=4.98 Amps

Ie = Ic+Ib#
print 'The Emitter Current Ie = %0.2f Amps'%Ie
The Emitter Current Ie = 5.00 Amps

Example No. 28_2 Page No. 912

In [2]:
# A transistor has the following currents: Ie is 100 mA, Ib is 1.96 mA. Calculate Ic.

# Given data

Ie = 100.0*10**-3#      # Emitter current=100 mAmps
Ib = 1.96*10**-3#     # Base current=4.98 Amps

Ic = Ie-Ib#
print 'The Collector Current Ic = %0.5f Amps'%Ic
print 'i.e 98.04 mAmps'
The Collector Current Ic = 0.09804 Amps
i.e 98.04 mAmps

Example No. 28_3 Page No. 913

In [3]:
# A transistor has the following currents: Ie is 50 mA, Ic is 49 mA. Calculate Ib.

# Given data

Ie = 50.0*10**-3#      # Emitter current=50 mAmps
Ic = 49.0*10**-3#      # Collector current=20 mAmps

Ib = Ie-Ic#
print 'The Base Current Ib = %0.4f Amps'%Ib
print 'i.e 1 mAmps'
The Base Current Ib = 0.0010 Amps
i.e 1 mAmps

Example No. 28_4 Page No. 914

In [4]:
# A transistor has the following currents: Ie is 15 mA, Ib is 60 uA. Calculate Alpha(dc).

# Given data

Ie = 15.*10**-3#      # Emitter current=15 mAmps
Ib = 60.*10**-6#      # Base current=60 uAmps

Ic = Ie-Ib#

Adc = Ic/Ie#
print 'The Value of Alpha(dc) = %0.4f'%Adc
The Value of Alpha(dc) = 0.9960

Example No. 28_5 Page No. 916

In [5]:
# A transistor has the following currents: Ic is 10 mA and Ib is 50 uA. Calculate Beta(dc).

# Given data

Ic = 10.*10**-3#      # Collector current=10 mAmps
Ib = 50.*10**-6#      # Base current=50 uAmps

Bdc = Ic/Ib#
print 'The Value of Beta(dc) = %0.f'%Bdc
The Value of Beta(dc) = 200

Example No. 28_6 Page No. 918

In [6]:
# A transistor has Beta(dc) of 150 and Ib of 75 uAmps. Calculate Ic.

# Given data

Bdc = 150.#          # Beta(dc)=150
Ib = 75.*10**-6#      # Base current=75 uAmps

Ic = Bdc*Ib#
print 'The Collector Current Ic = %0.5f Amps'%Ic
print 'i.e 11.25 mAmps'
The Collector Current Ic = 0.01125 Amps
i.e 11.25 mAmps

Example No. 28_7 Page No. 920

In [7]:
# A transistor has Beta(dc) of 100. Calculate Alpha(dc).

# Given data

Bdc = 100.0#  # Beta(dc)=100

Adc = Bdc/(1+Bdc)#
print 'The Value of Alpha(dc) = %0.4f'%Adc
The Value of Alpha(dc) = 0.9901

Example No. 28_8 Page No. 922

In [8]:
# A transistor has Alpha(dc) of 0.995. Calculate Beta(dc).

# Given data

Adc = 0.995#  # Alpha(dc)=100

Bdc = Adc/(1-Adc)#
print 'The Value of Beta(dc) =%0.2f'%Bdc
The Value of Beta(dc) =199.00

Example No. 28_9 Page No. 922

In [9]:
# Calculate Pd if Vcc is 10 V and Ib is 50 uAmps. Assume Beta(dc) is 100.

# Given data

Bdc = 100.#          # Beta(dc)=100
Ib = 50.*10**-6#      # Base current=50 uAmps
Vcc = 10.#           # Supply voltage=10 Volts

Vce = Vcc

Ic = Bdc*Ib#

Pd = Vce*Ic#
print 'The Power Dissipation = %0.2f Watts'%Pd
print 'i.e 50 mWatts'
The Power Dissipation = 0.05 Watts
i.e 50 mWatts

Example No. 28_10 Page No. 922

In [10]:
# The transistor has a power rating of 0.5 W. If Vce is 20 V, calculate the maximum allowable collector current, Ic, that can exist without exceeding the transistor’s power rating.

# Given data

Pdmax = 0.5#        # Power dissipation(max)=0.5 Watts
Vce = 20.#           # Voltage (collector to emitter)=20 Volts

Ic = Pdmax/Vce#
print 'The Maximum Allowable Collector Current Ic(max) = %0.3f Amps'%Ic
print 'i.e 25 mAmps'
The Maximum Allowable Collector Current Ic(max) = 0.025 Amps
i.e 25 mAmps

Example No. 28_11 Page No. 923

In [11]:
# Assume that a transistor has a power rating Pd(max) of 350 mW at an ambient temperature Ta of 25°C. The derating factor is 2.8 mW/°C. Calculate the power rating at 50°C.

# Given data

f = 2.8*10**-3#      # Derating factor=2.8 mW/°C
Pd = 350.*10**-3#     # Power dissipation(max)=350 mWatts
Ta = 25.#            # Ambient Temperature=25°C
Tp = 50.#            # Power rating at 50°C

delT = Tp-Ta#       # Difference between max and min temp

delPd = delT*f#

Prat = Pd-delPd#
print 'The Power Rating at 50°C = %0.2f Watts'%Prat
print 'i.e 280 mWatts'
The Power Rating at 50°C = 0.28 Watts
i.e 280 mWatts

Example No. 28_12 Page No. 923

In [12]:
%matplotlib inline
from matplotlib.pyplot import plot,xlabel,ylabel,show,title
# Solve for Ib, Ic, Vce. Also, Construct a dc load line showing the valuse of Ic(sat), Vce(off), Icq, Vceq.

# Given data
Vcc = 12.#               # Supply voltage=12 Volts
Vbe = 0.7#              # Base-Emitter Voltage=0.7 Volts
Rb = 390.*10**3#          # Base Resistor=390K Ohms
Rc = 1.5*10**3#          # Collector Resistor=1.5K Ohms
B = 150.#                # Beta(dc)=150

Ib = (Vcc-Vbe)/Rb#
print 'The Base Current = %0.4f Amps.'%Ib
print 'Approx 28.97 mAmps'

Icq = B*Ib#
print 'The Collector Current = %0.4f Amps'%Icq
print 'Approx 4.35 mAmps'

Vceq = Vcc-(Icq*Rc)#
print  'The Voltage Collector-Emitter = %0.2f Volts'%Vceq

# For DC load line

Icsat = (Vcc/Rc)#
Vceoff = Vcc#

Vce1=[Vceoff, Vceq ,0]
Ic1=[0 ,Icq ,Icsat]

#To plot DC load line

print "Q(%f,%f)\n"%(Vceq,Icq)
plot(Vce1, Ic1)
plot(Vceq,Icq)
plot(0,Icq)
plot(Vceq,0)
plot(0,Icsat)
plot(Vceoff,0)
xlabel("Vce in volt")
ylabel("Ic in Ampere")
title("DC Load-line for Base-Biased Transistor Circuit")
show()      
The Base Current = 0.0000 Amps.
Approx 28.97 mAmps
The Collector Current = 0.0043 Amps
Approx 4.35 mAmps
The Voltage Collector-Emitter = 5.48 Volts
Q(5.480769,0.004346)

Example No. 28_13 Page No. 924

In [13]:
%matplotlib inline
from matplotlib.pyplot import plot,xlabel,ylabel,show,title

# Solve for Vb, Ve, Ic, Vc, and Vce. Also, calculate Ic(sat) and Vce(off). Finally, construct a dc load line showing the values of Ic(sat), Vce(off), Icq, and Vceq.

# Given data

R1 = 33.*10**3#       # Resistor 1=33 kOhms
R2 = 5.6*10**3#      # Resistor 2=5.6 kOhms
Rc = 1.5*10**3#      # Collector resistance=1.5 kOhms
Re = 390.#           # Emitter resistance=390 Ohms
Bdc = 200.#          # Beta(dc)= 200
Vcc = 18.#           # Supply voltage = 18 Volts
Vbe = 0.7#          # Base-Emmiter Voltage=0.7 Volts

Vb = Vcc*(R2/(R1+R2))#
print 'The Base Voltage = %0.2f Volts'%Vb

Ve = Vb-Vbe#
print 'The Emmiter Voltage = %0.2f Volts'%Ve

Ie = Ve/Re#         # Emitter current

Ic = Ie#

Vc = Vcc-(Ic*Rc)#
print 'The Collector Voltage = %0.2f Volts'%Vc
print 'Approx 10.65 Volts'

Vce = Vcc-(Ic*(Rc+Re))#
print 'The Collector-Emitter Voltage = %0.2f Volts'%Vce
print 'Approx 8.74 Volts'

Icsat = Vcc/(Rc+Re)#
print 'The Current Ic(sat) = %0.2f Amps'%Icsat
print 'i.e 9.52 mAmps'

Vceoff = Vcc#
print 'The Voltage Vce(off) = %0.2f Volts'%Vceoff

Icq = Ic
Vceq = Vce

Vce1=[Vcc, Vceq, 0]
Ic1=[0, Icq, Icsat]

#To plot DC load line

print "Q(%f,%f)\n"%(Vceq,Icq)
plot(Vce1, Ic1)
plot(Vceq,Icq)
plot(0,Icq)
plot(Vceq,0)
plot(0,Icsat)
plot(Vceoff,0)
xlabel("Vce in Volt")
ylabel("Ic in mAmps")
title("DC Load-line for Voltage Divider-Biased Transistor Circuit")
show()
The Base Voltage = 2.61 Volts
The Emmiter Voltage = 1.91 Volts
The Collector Voltage = 10.65 Volts
Approx 10.65 Volts
The Collector-Emitter Voltage = 8.74 Volts
Approx 8.74 Volts
The Current Ic(sat) = 0.01 Amps
i.e 9.52 mAmps
The Voltage Vce(off) = 18.00 Volts
Q(8.737067,0.004901)

Example No. 28_14 Page No. 925

In [14]:
# For the pnp transistor, solve for Vb, Ve, Ic, Vc, and Vce.

# Given data

R1 = 33.*10**3#     # Resistor1=33 kOhms
R2 = 6.2*10**3#    # Resistor2=6.2 kOhms
Rc = 2.*10**3#      # Collector resistance=2 kOhms
Re = 500.#         # Emitter resistance=500 Ohms
Vcc = 12.#         # Supply voltage=12 Volts
Vbe = 0.7#        # Base-Emmiter Voltage=0.7 Volts


Vb = -Vcc*(R2/(R1+R2))#
print 'The Base Voltage = %0.2f Volts'%Vb
print 'Approx -1.9 Volts'

Ve = Vb-(-Vbe)#
print 'The Emitter Voltage = %0.2f Volts'%Ve
print 'Approx -1.2 Volts'

Ic = -(Ve/Re)#     # Ic =~ Ie
print 'The Collector Current = %0.2f Amps'%Ic
print 'Approx 2.4 mAmps'

Vc = -Vcc+(Ic*Rc)
print 'The Collector Voltage = %0.2f Volts'%Vc

Vce = -Vcc+(Ic*(Rc+Re))#
print 'The Collector-Emitter Voltage = %0.2f Volts'%Vce
The Base Voltage = -1.90 Volts
Approx -1.9 Volts
The Emitter Voltage = -1.20 Volts
Approx -1.2 Volts
The Collector Current = 0.00 Amps
Approx 2.4 mAmps
The Collector Voltage = -7.21 Volts
The Collector-Emitter Voltage = -6.01 Volts

Example No. 28_15 Page No. 926

In [15]:
# Calculate Ie and Vc

# Given data

Vee = 6.#        # Supply voltage at emitter=6 Volts
Vcc = 15.#       # Supply voltage at collector=15 Volts
Vbe = 0.7#      # Base-Emmiter Voltage=0.7 Volts
Rc = 1.5*10**3#  # Collector resistance=1.5 kOhms
Re = 1.*10**3#    # Emitter resistance=1 kOhms

Ie = (Vee-Vbe)/Re#
print 'The Emitter current = %0.4f Amps'%Ie
print 'i.e 5.3 mAmps'

Ic = Ie#        # Ic =~ Ie

Vc = Vcc-Ic*Rc#
print 'The Collector voltage = %0.2f Volts'%Vc
The Emitter current = 0.0053 Amps
i.e 5.3 mAmps
The Collector voltage = 7.05 Volts