# Determine Id for each value of Vgs (a) 0V# (b) -0.5V# (c) -1V (d) -2V (e) -3V
# Given Data
Vgs1 = 0# # Voltage Gate-Source 1=0 Volts
Vgs2 = -0.5# # Voltage Gate-Source 2=-0.5 Volts
Vgs3 = -1.# # Voltage Gate-Source 3=-1 Volts
Vgs4 = -2.# # Voltage Gate-Source 4=-2 Volts
Vgs5 = -3.# # Voltage Gate-Source 5=-3 Volts
Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts
Idss = 10.*10**-3 # Idss = 10m Amps
a = (1-(Vgs1/Vgsoff))
b = (1-(Vgs2/Vgsoff))
c = (1-(Vgs3/Vgsoff))
d = (1-(Vgs4/Vgsoff))
e = (1-(Vgs5/Vgsoff))
# Vgs = 0 Volts
Id1 = Idss*a*a
print 'The Value of Id for Vgs is 0 Volts = %0.2f Amps'%Id1
print 'i.e 10 mAmps'
# Vgs = -0.5 Volts
Id2 = Idss*b*b
print 'The Value of Id for Vgs is -0.5 Volts = %0.4f Amps'%Id2
print 'i.e 7.65 mAmps'
# Vgs = -1 Volts
Id3 = Idss*c*c
print 'The Value of Id for Vgs is -1 Volts = %0.4f Amps'%Id3
print 'i.e 5.62 mAmps'
# Vgs = -2 Volts
Id4 = Idss*d*d
print 'The Value of Id for Vgs is -2 Volts = %0.4f Amps'%Id4
print 'i.e 2.5 mAmps'
# Vgs = -3 Volts
Id5 = Idss*e*e
print 'The Value of Id for Vgs is -3 Volts = %0.4f Amps'%Id5
print 'i.e 0.625 mAmps'
# Find the minimim and maximum value of Id and Vds if Vgs=-1.5 Volts
# Given Data
Idssmin = 2.*10**-3# # Idss(min)=2m Amp
Idssmax = 20.*10**-3# # Idss(max)=20m Amp
Vgs = -1.5# # Voltage Gate-Source=-1.5V
Vgsoffmin = -2.# # Voltage Gate-Source(off)(min)=-2 Volts
Vgsoffmax = -8.# # Voltage Gate-Source(off)(max)=-8 Volts
Vdd = 2.0# # Supply Voltage(Drain)=20 Volts
Rd = 1.*10**3# # Drain Resistance=1k Ohms
a = 1-(Vgs/Vgsoffmin)#
b = 1-(Vgs/Vgsoffmax)#
# Calculation using Minimum Values
Id1 = Idssmin*a*a#
print 'The Value of Id = %0.4e Amps using Minimum Values'%Id1
print 'i.e 125 uAmps'
Vds1 = Vdd-Id1*Rd#
print 'The Value of Vds = %0.2f Volts using Minimum Values'%Vds1
# Calculation using Maximum Values
Id2 = Idssmax*b*b#
print 'The Value of Id = %0.4f Amps using Maximum Values'%Id2
print 'i.e 13.2 mAmps'
Vds2 = Vdd-Id2*Rd#
print 'The Value of Vds = %0.2f Volts using Maximun Values'%Vds2
Vp = -Vgsoffmax#
Vdsp = Vp+Vgs#
print 'The Value of Vds(p) = %0.2f Volts using Maximun Values'%Vdsp
# Calculate the value of Vd
# Given Data
Vs = 1.# # Voltage at Resistor Rs=1 Volts
Rs = 200.# # Source Resistor=200 Ohms
Vdd = 10.# # Supply Voltage(Drain)=10 Volts
Rd = 1.*10**3# # Drain Resistor=1k Ohms
Is=Vs/Rs#
Id = Is#
Vd = Vdd-Id*Rd#
print 'The Drain Voltage Vd = %0.2f Volts'%Vd,
# Calculate Vg, Vs, Id, Vd.
# Given Data
R1 = 390.*10**3# # Resistor 1=390k Ohms
R2 = 100.*10**3# # Resistor 2=100k Ohms
Rd = 1.*10**3# # Drain Resistor=1k Ohms
Vdd = 15.# # Supply Voltage(Drain)=15 Volts
Vgs = -1.# # Voltage Gate-Source=-1 Volts
Rs = 800.# # Source Resistor=800 Ohms
Vg = (R2/(R1+R2))*Vdd#
print 'The Value of Vg = %0.2f Volts'%Vg
print 'i.e 3 Volts'
Vs = Vg-Vgs#
print 'The Value of Vs = %0.2f Volts'%Vs
print 'i.e 4 Volts'
Id = Vs/Rs#
print 'The Value of Id = %0.2e Amps.'%Id
print 'i.e 5 mAmps'
Vd = Vdd-Id*Rd
print 'The Value of Vd = %0.2f Volts'%Vd
print 'Approx 10 Volts'
# Calculate the value Drain Current Id and Drain Voltage Vd.
# Given Data
Vdd = 15# # Supply Voltage(Drain)=15 Volts
Vbe = 0.7# # Voltage Base-Emitter=0.7 Volts
Re = 2.2*10**3# # Emitter Resistor=2.2 kOhms
Rd = 1*10**3# # Drain Resistor=1 kOhms
Vee = 15# # Supply Voltage(Emitter)=15 Volts
Ic = (Vee-Vbe)/Re#
Id = Ic#
print 'The Drain Current Id = %0.2e Amps'%Id
print 'i.e 6.5 mAmps'
Vd = Vdd-Id*Rd#
print 'The Drain Voltage Vd = %0.2f Voltage'%Vd
# Calculate the Voltage Gain Av and Output Voltage Vo
# Given Data
Rd = 1.5*10**3# # Drain Resistor=1.5 kOhms
Rl = 10*10**3# # Load Resistor=10 kOhms
Idss = 10*10**-3# # Idss=10 mAmps
Vgs = -1# # Voltage Gate-Source=-1 Volts
Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts
Vin = 0.2# # Input Voltage=0.2 Volts(p-p)
gmo = 2*Idss/(-Vgsoff)#
gm = gmo*(1-(Vgs/Vgsoff))#
rl = (Rd*Rl)/(Rd+Rl)#
Av = gm*rl#
print 'The Voltage Gain Av =%0.2f'%Av
print 'Approx 4.875'
Vo = Av*Vin
print 'The Output Voltage Vo = %0.3f Volts(p-p)'%Vo
# Calculate Av, Vo & Zo.
# Given Data
Rs = 240.# # Source Resistor=240 Ohms
Rl = 1.8*10**3# # Load Resistor=1.8 kOhms
Vgsoff = -8.# # Voltage Gate-Source(off)=-8 Volts
Vgs = -2.# # Voltage Gate-Source=-2 Volts
Idss = 15.*10**-3 # Idss=15 mAmps.
Vin = 1.# # Input Voltage=1 Volts(p-p)
rl = ((Rs*Rl)/(Rs+Rl))#
gmo = 2*Idss/-Vgsoff#
gm = gmo*(1-(Vgs/Vgsoff))#
Av = gm*rl/(1+gm*rl)#
print 'The Voltage Gain Av =%0.2f'%Av
Vo = Av*Vin#
print 'The Output Voltage Vo = %0.2f Volts(p-p)'%Vo
A = (1/gm)#
Zo = ((Rs*A)/(Rs+A))#
print 'The Output Impedence Zo = %0.2f Ohms'%Zo
#Calculate Av, Vo, Zin.
# Given Data
Rd = 1.2*10**3# # Drain Resistor=1.2 kOhms
Rl = 15.*10**3# # Load Resistor=15 kOhms
gm = 3.75*10**-3# # Transconductance=3.75 mSiemens
Vin = 10.*10**-3# # Input Voltage=10 mVpp
Rs = 200.# # Source Resistor=200 Ohms
rl = ((Rd*Rl)/(Rd+Rl))#
Av = gm*rl#
print 'The Voltage Gain Av =%0.2f'%Av
Vo = Av*Vin#
print 'The Output Voltage = %0.2e Volts(p-p)'%Vo
print 'Approx 41.6 mVolts(p-p)'
A = (1/gm)#
Zi = ((Rs*A)/(Rs+A))#
print 'The Output Impedence Zi = %0.2f Ohms'%Zi
print 'Approx 114 Ohms'
#Determine Id for each value of Vgs (a) 2V# (b) -2V# (c) 0V
# Given Data
Vgs1 = 2.# # Voltage Gate-Source 1=2 Volts
Vgs2 = -2.# # Voltage Gate-Source 2=-2 Volts
Vgs3 = 0# # Voltage Gate-Source 3=0 Volts
Vgsoff = -4.# # Voltage Gate-Source(off)=-4 Volts
Idss = 10.*10**-3# # Idss = 10m Amps
a = (1-(Vgs1/Vgsoff))#
b = (1-(Vgs2/Vgsoff))#
c = (1-(Vgs3/Vgsoff))#
# Vgs = 2 Volts
Id1 = Idss*a*a#
print 'The Value of Id for Vgs is 2 Volts = %0.2e Amps'%Id1
print 'i.e 22.5 mAmps'
# Vgs = -2 Volts
Id2 = Idss*b*b#
print 'The Value of Id for Vgs is -2 Volts = %0.2e Amps'%Id2
print 'i.e 2.5 mAmps'
# Vgs = 0 Volts
Id3 = Idss*c*c#
print 'The Value of Id for Vgs is 0 Volts = %0.2e Amps'%Id3
print 'i.e 10 mAmps'
# Calculate the value of Rd to provide an Id(on) of 10m Amps.
# Given Data
Vdd = 15.# # Suppy Voltage(Drain)=15 Volts
Vgson = 10.# # Voltage Gate-Source(on)=10 Volts
Idon = 10.*10**-3# # Drain Current(on)=10m Amps
Rd = (Vdd-Vgson)/Idon#
print 'The Drain Resistance = %0.2f Ohms'%Rd
print 'A 470 Ohms resistor would provide the proper biasing voltage at the gate'