#Heat loss by radiaiton
#Variable declaration
e=0.9 #[Emissivity]
sigma=5.67*10**-8 #[W/m**2.K**4]
T1=377 #[K]
T2=283 #[K]
#Calculation
Qr_by_a=e*sigma*(T1**4-T2**4) #[W/sq m]
#Result
print"Heat loss by radiation is",round(Qr_by_a),"W/m^2"
#Radiation from unlagged steam pipe
#Variable declaration
e=0.9 #Emissivity
T1=393 #[K]
T2=293 #[K]
sigma=5.67*10**-8 #[W/sq m.K]
#Calculation
Qr_by_a=e*sigma*(T1**4-T2**4) #W/sq m
#Result
print"Rate of heat transfer by radiation is",round(Qr_by_a,1),"W/sq m"
#Interchange of radiation energy
import math
#Variable declaration
L=1 #[m]
e=0.8 #Emissivity
sigma=5.67*10**-8 #[m**2.K**4]
T1=423.0 #[K]
T2=300.0 #[K]
Do=60.0 #[mm]
Do=Do/1000 #[m]
#Calculation
A=round(math.pi*Do*L,3) #[sq m]
Qr=e*sigma*A*(T1**4-T2**4) #[W/m]
#Result
print"Net radiaiton rate per 1 metre length of pipe is",round(Qr),"W/m(approx)"
#Heat loss in unlagged steam pipe
import math
#Variable declaration
e=0.9 #Emissivity
L=1.0 #[m]
Do=50.0 #[mm]
Do=Do/1000 #[m]
sigma=5.67*10**-8 #[W/(m**2.K**4)]
T1=415.0 #[K]
T2=290.0 #[K]
dT=T1-T2 #[K]
#Calculation
hc=1.18*(dT/Do)**(0.25) #[W/sq m.K]
A=math.pi*Do*L #Area in [sq m]
Qc=hc*A*dT #Heat loss by convection W/m
Qr=e*sigma*A*(T1**4-T2**4) #Heat loss by radiation per length W/m
Qt=Qc+Qr #Total heat loss in [W/m]
#Result
print"Total heat loss by convection is",round(Qt,1),"W/m"
#Loss from horizontal pipe
import math
#Variable declaration
e=0.85
sigma=5.67*10**-8 #[W/sq m.K]
T1=443.0 #[K]
T2=290.0 #[K]
dT=T1-T2 #[K]
hc=1.64*dT**0.25 #W/sq m.K
Do=60.0 #[mm]
Do=Do/1000 #[m]
L=6 #Length [m]
#Calculation
A=math.pi*Do*L #Surface area of pipe in [sq m]
Qr=e*sigma*A*(T1**4-T2**4) # Rate of heat loss by radiaiton W
Qc=hc*A*(T1-T2) # Rate of heat loss by convection [W]
Qt=Qr+Qc #Total heat loss [W]
#Result
print"Total heat loss is",round(Qt),"W"
#Heat loss by radiation in tube
import math
#Variable declaration
sigma=5.67*10**-8 #[W/m**2.K**4]
e1=0.79
e2=0.93
T1=500 #[K]
T2=300 #[K]
D=70 #[mm]
D=D/1000 #[m]
L=3 #[m]
W=0.3 #Side of conduit [m]
#Calculation
A1=math.pi*D*L #[sq m]
A1=0.659 #Approximate calculation in book in [m**2]
A2=4*(L*W) #[sq m]
Q=sigma*A1*(T1**4-T2**4)/(1/e1+((A1/A2)*(1/e2-1))) #[W]
#Result
print"Heat lost by radiation is",round(Q,1),"W"
#Net radiant interchange
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
T1=703 #[K]
T2=513 #[K]
e1=0.85
e2=0.75
#Calculation
Q_by_Ar=sigma*(T1**4-T2**4)/(1/e1+1/e2-1) #[W/sq m]
#Result
print"Net radiant interchange per square metre is",round(Q_by_Ar),"W/sq m"
#Radiant interchange between plates
#Variable declaration
L=3 #[m]
A=L**2 #Area in [sq m]
sigma=5.67*10**-8 #[W/sq m.K**4]
T1=373 #[K]
T2=313 #[K]
e1=0.736
e2=e1
#Calculation
F12=1.0/((1.0/e1)+(1.0/e2)-1)
Q=sigma*A*F12*(T1**4-T2**4) #[W]
#Result
print"Net radiant interchange is",round(Q),"W"
#Heat loss from thermofask
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
e1=0.05
e2=0.05
#A1=A2=1 (let)
A1=1
A2=A1
#Calculation
F12=1.0/(1.0/e1+(A1/A2)*(1.0/e2-1))
T1=368 #[K]
T2=293 #[K]
Q_by_A=sigma*F12*(T1**4-T2**4) #Heat loss per unit Area [W/sq m]
print"Rate of heat loss when of silvered surface is",round(Q_by_A,2),"W/sq m"
#When both the surfaces are black
e1=1
e2=1
F12=1/(1/e1+(A1/A2)*(1/e2-1))
Q_by_A=sigma*F12*(T1**4-T2**4) #[W/sq m]
#Result
print"\n When both surfaces are black,Rate of heat loss is",round(Q_by_A),"W/sq m"
#Diwar flask
import math
#Variable declaration
e1=0.05
e2=e1
A1=0.6944
A2=1
T1=293 #[K]
T2=90 #[K]
sigma=5.67*10**-8 #[W/m**2.K**4]
D=0.3 #Diameter in [m]
#Calculation
F12=1.0/(1.0/e1+(A1/A2)*(1.0/e2-1))
Q_by_A=sigma*F12*(T1**4-T2**4) #[W/sq m]
Q=Q_by_A*math.pi*(D**2) #[kJ/h]
Q=Q*3600/1000 #[kJ/h]
lamda=21.44 #Latent heat in [kJ/kg]
m_dot=Q/lamda #kg/h
#Result
print"The liquid oxygen will evaporate at",round(m_dot,2),"kg/h"
#Heat flow due to radiation
import math
#Variable declaration
sigma=5.67*10**-8 #W/(m**2.K**4)
e1=0.3
e2=e1
D1=0.3 #[m]
D2=0.5 #[m]
T1=90 #[K]
T2=313 #[K]
#Calculation
A1=math.pi*D1**2 #Area in [sq m]
A2=math.pi*D2**2#Area in [sq m]
Q1=sigma*A1*(T1**4-T2**4)/(1/e1+(A1/A2)*(1/e2-1)) #[W]
Q1=abs(Q1) #Absolute value in [W]
print"Rate of heat flow due to radiation is",round(Q1,2),"W"
#When Aluminium is used
e1=0.05
e2=0.5
Q2=sigma*A1*(T1**4-T2**4)/(1/e1+(A1/A2)*(1/0.3-1)) #[W]
Q2=abs(Q2) #Absolute value in [W]
Red=(Q1-Q2)*100/Q1 #Percent reduction
#Result
print"Reduction in heat flow will be",round(Red,2),"%"
#Heat exchange between concentric shell
import math
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
T1=77.0 #[K]
T2=303.0 #[K]
D1=32.0 #cm
D1=D1/100 #[m]
D2=36.0 #[cm]
D2=D2/100 #[m]
#Calculation
A1=math.pi*D1**2 #[sq m]
A2=math.pi*D2**2 #[sq m]
e1=0.03
e2=e1
Q=sigma*A1*(T1**4-T2**4)/(1.0/e1+(A1/A2)*(1.0/e2-1)) #[W]
Q=Q*3600.0/1000 #[kJ/h]
Q=abs(Q) #[kJ/h]
lamda=201.0 #kJ/kg
m_dot=Q/lamda #Evaporation rate in [kg/h]
#Result
print"Nitrogen evaporates at",round(m_dot,3),"kg/h"
#Evaporation in concenric vessels
import math
#Variable declaration
D1=250.0 #Inner sphere idameter[mm]
D1=D1/1000 #Outer diameter [m]
D2=350.0 #[mm]
D2=D2/1000 #[m]
sigma=5.67*10**-8 #W/(sq m.K**4)
#Calculation
A1=math.pi*D1**2 #[sq m]
A2=math.pi*D2**2 #[sq m]
T1=76.0 #[K]
T2=300.0 #[K]
e1=0.04
e2=e1
Q=sigma*A1*(T1**4-T2**4)/((1.0/e1)+(A1/A2)*((1.0/e2)-1)) #[W]
Q=-2.45 #Approximate
Q=abs(Q) #[W]
Q=Q*3600.0/1000 #[kJ/h]
lamda=200.0 #kJ/kg
Rate=Q/lamda #[kg/h]
#Result
print"Rate of evaporation is",Rate,"kg/h"
#infinitely long plates
#Variable declaration
sigma=5.67*10**-8 #[W/(m**2.K**4)]
e1=0.4
e3=0.2
T1=473 #[K]
T3=303 #[K]
#Calculation
Q_by_a=sigma*(T1**4-T3**4)/((1.0/e1)+(1.0/e3)-1) #[W/sq m]
#Q1_by_a=sigma*(T1**4-T2**4)/((1/e1)+(1/e2)-1)=sigma*A*(T2**4-T3**4)/((1/e2)+(1/e3)-1) #[W/sq m]
e2=0.5
#Solving we get
T2=((6.0/9.5)*((3.5/6)*T3**4+T1**4))**(1.0/4.0) #[K]
Q1_by_a=sigma*(T1**4-T2**4)/((1.0/e1)+(1.0/e2)-1) #[W/sq m]
red=(Q_by_a-Q1_by_a)*100/Q_by_a
#Result
print"Heat transfer rate per unit area(WITHOUT SHIELD) due to radiation is",round(Q_by_a,1),"W/sq m"
print"\nHeat transfer rate per unit area(WITH SHIELD) due to radiation is",round(Q1_by_a,2),"W/sq m"
print"\nReduction in heat loss is",round(red,2),"%"
#Heat exchange between parallel plates
from scipy.optimize import fsolve
import math
#In steady state,we can write:
#Qcd=Qdb
#sigma(Tc**4-Td**4)*/(1/ec+1/ed-1)=sigma(Td**4-Tb**4)/(1/ed+1/eb-1)
# i.e Td**4=0.5*(Tc**4-Tb**4)
#Variable declaration
Ta=600 #[K]
eA=0.8
eC=0.5
eD=0.4
sigma=5.67*10**-8 #For air
#Calculation
#(600**4-Tc**4)/2.25=(Tc**4-Td**4)/3.5
#1.56*(600**4-Tc**4)=Tc**4-Td**4
#Putting value of Td in terms of Tc
#1.56*(600**4-Tc**4)=Tc**4-0.5*(Tc**4-300**4)
def f(Tc):
y=1.56*(600**4-Tc**4)-Tc**4+0.5*(Tc**4-300**4)
return(y)
Tc=fsolve(f,500) #[K]
#or
Tc=560.94 #[K] Approximate after solving
Td=math.sqrt(math.sqrt(0.5*(Tc**4-300**4))) #[K]
Q_by_a=sigma*(Ta**4-Tc**4)/(1/eA+1/eC-1) #[W/sq m]
#Result
print"Steady state temperatures,Tc=",Tc,"K,and Td=",round(Td,2)," K"
print"Rate of heat exchange per unit area=",round(Q_by_a,2),"W/m**2"
#Thermal radiation in pipe
#Variable declaration
sigma=5.67*10**-8 #[W/(sq m.K**4)]
e=0.8
T1=673 #[K]
T2=303 #[K]
Do=200 #[mm]
Do=Do/1000 #[m]
L=1 #Let [m]
#Calculation
import math
A1=math.pi*Do*L #[m**2/m]
#CAse 1: Pipe to surrundings
Q1=e*A1*sigma*(T1**4-T2**4) #[W/m]
Q1=5600 #Approximated
#Q1=5600 #[W/m] approximated in book for calculation purpose
#Concentric cylinders
e1=0.8
e2=0.91
D1=0.2 #[m]
D2=0.4 #[m]
Q2=sigma*0.628*(T1**4-T2**4)/((1/e1)+(D1/D2)*((1/e2)-1)) #[W/m] length
Red=Q1-Q2 #Reduction in heat loss
#Result
print"Due to thermal radiaiton,Loss of heat to surrounding is",round(Q1),"W/m"
print"When pipe is enclosed in 1 400 mm diameter brick conduit,Loss of heat is",round(Q2),"W/m"
print" Reduction in heat loss is",round(Red),"W/m"
#Heat transfer in concentric tube
#Variable declaration
sigma=5.67*10**-8 #[W/(sq m.K**4)]
T1=813.0 #[K]
T2=473.0 #[K]
e1=0.87
e2=0.26
D1=0.25 #[m]
D2=0.3 #[m]
#Calculation
Q_by_a1=sigma*(T1**4-T2**4)/(1.0/e1+(D1/D2)*(1.0/e2-1.0)) #[W/ sqm]
#Result
print"Heat transfer by radiaiton is",round(Q_by_a1),"W/sq m"
#Heat exchange between black plates
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
A1=0.5*1 #[sq m]
F12=0.285
T1=1273 #/[K]
T2=773 #[K]
#Calculation
Q=sigma*A1*F12*(T1**4-T2**4) #[W]
#Result
print"Net radiant heat exchange between plates is",round(Q),"W"
#Radiation shield
import math
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
T1=750 #[K]
T2=500 #[K]
e1=0.75
e2=0.5
#Calculation
#Heat transfer without shield :
Q_by_a=sigma*(T1**4-T2**4)/((1/e1)+(1/e2)-1) #[W/sq m]
#Heat transfer with shield:
R1=(1-e1)/e1 #Resistance 1
F13=1
R2=1/F13 #Resistance 2
e3=0.05
R3=(1-e3)/e3 #Resistance 3
R4=(1-e3)/e3 #Resistance 4
F32=1
R5=1/F32 #Resistance 5
R6=(1-e2)/e2 #Resistance 6
Total_R=R1+R2+R3+R4+R5+R6 #Total resistance
Q_by_as=sigma*(T1**4-T2**4)/Total_R #[W/sq m]
Red=(Q_by_a-Q_by_as)*100/Q_by_a #Reduciton in heat tranfer due to shield
#Result
print"Reduction in heat transfer rate as a result of radiaiotn shield is",round(Red,2),"percent"
#Heat transfer with radiaiton shield
#Variable declaration
e1=0.3
e2=0.8
#Calculation
#Let sigma*(T1**4-T2**4)=z=1(const)
z=1 #Let
Q_by_A=z/(1/e1+1/e2-1) #W/sq m
#Heat transfer with radiation shield
e3=0.04
F13=1
F32=1
#The resistances are:
R1=(1-e1)/e1
R2=1.0/F13
R3=(1-e3)/e3
R4=R3
R5=1.0/F32
R6=(1-e2)/e2
R=R1+R2+R3+R4+R5+R6 #Total resistance
Q_by_As=z/R #where z=sigma*(T1**4-T2**4) #W/sq m
red=(Q_by_A-Q_by_As)*100/Q_by_A #Percent reduction in heat transfer
#Result
print"The heat transfer is reduced by",round(red,1),"% due to shield"
#Radiaition shape factor
#Variable declaration
sigma=5.67*10**-8
T1=1273 #[K]
T2=773 #[K]
T3=300 #[K]
A1=0.5 #[sq m]
A2=A1 #[sq m]
F12=0.285
F21=F12
F13=1-F12
F23=1-F21
e1=0.2
e2=0.5
#Calculation
#Resistance in the network are calculated as:
R1=1-e1/(e1*A1)
R2=1-e2/(e2*A2)
R3=1.0/(A1*F12)
R4=1.0/(A1*F13)
R5=1.0/(A2*F23)
R6=0 #Given (1-e3)/e3*A3=0
#Also
Eb1=sigma*T1**4 #W/sq m
Eb2=sigma*T2**4 #[W/sq m]
Eb3=sigma*T3**4 #[W/sq m]
#Equations are:
#(Eb1-J1)/2+(J2-J1)/7.018+(Eb3-J1)/2.797=0
#(J1-J2)/7.018+(Eb3-J2)/2.797+(Eb2-J2)/2=0
#On solving we get:
J1=33515 #[W/sq m]
J2=15048 #[W/sqm]
J3=Eb3 #[W/sq m]
Q1=(Eb1-J1)/((1.0-e1)/(e1*A1)) #[W/sq m]
Q2=(Eb2-J2)/((1.0-e2)/(e2*A2)) #[W/sq m]
Q3=(J1-J3)/(1.0/(A1*F13))+(J2-J3)/(1.0/(A2*F23)) #[W/sq m]
#Result
print"Total heat lost by plate 1 is",round(Q1),"W/sq m"
print"Total heat lost by plate 2 is",round(Q2),"W/sq m"
print"The net energy lost by both plates must be absorbed by the room",round(Q3,1),"=",round(Q1+Q2)
#Radiation loss in plates
#Variable declaration
sigma=5.67*10**-8 #[W/sq m.K**4]
e1=0.7
e2=0.7
T1=866.5 #[K]
T2=588.8 #[K]
#Calculation
Q_by_A=sigma*(T1**4-T2**4)/((1/e1)+(1/e2)-1) #[W/sq m]
e1=0.7
e2=e1
e3=e1
e4=e1
e=e1
#Q with n shells =1/(n+1)
n=2
Q_shield=1/(n+1)
es1=e1
es2=e1
Q_by_A=sigma*(T1**4-T2**4)/((1/e1)+(1/e2)+2*(1/es1+1/es2)-(n+1)) #[W/sq m]
#Result
print"\n New Radiaiton loss is",round(Q_by_A,1),"W/sq m"
#Radiation in Concentric tube
import math
#Variable declaration
#1.WITHOUT SHIELD
sigma=5.67*10**-8
e1=0.12
e2=0.15
T1=100 #[K]
T2=300 #[K]
r1=0.015 #[m]
r2=0.045 #[m]
L=1 #[m]
#Calculation
A1=2*math.pi*r1*L #[sq m]
Q_by_L=2*math.pi*r1*sigma*(T1**4-T2**4)/(1/e1+(r1/r2)*(1/e2-1)) #[W/m]
#-ve saign indicates that the net heat flow is in the radial inward direction
print "Without shield,Q=",round(Q_by_L,3),"W/m"
#2.WITH CYLINDRICAL RADIATION SHIELD
e3=0.10
e4=0.05
r3=0.0225 #[m]
Qs_by_L=2*math.pi*r1*sigma*(T1**4-T2**4)/(1/e1+r1/r2*(1/e2-1)+(r1/r3)*(1/e3+1/e4-1)) #[W/sq m]
red=(abs(Q_by_L)-abs(Qs_by_L))*100/abs(Q_by_L) #percent reduction in heat gain
#Radiation network approach
A3=2*math.pi*r3 #[sq m]
A2=2*math.pi*r2 #[sq m]
F13=1
F32=1
R1=(1-e1)/(e1*A1)
R2=1.0/(A1*F13)
R3=(1-e3)/(e3*A3)
R4=(1-e4)/(e4*A3)
R5=1.0/(A3*F32)
R6=(1-e2)/(e2*A2)
Qs=sigma*(T1**4-T2**4)/((1.0-e1)/(e1*A1)+1/(A1*F13)+(1.0-e3)/(e3*A3)+(1.0-e4)/(e4*A3)+1/(A3*F32)+(1.0-e2)/(e2*A2))
#Result
print"With cylindrical radiaiton shield Heat gained by fluid per 1 m lengh of tube is",round(Qs_by_L,3),"W/m"
print"Percent reduction in heat gain is",round(red,2),"%"
print"With radiaiton network approach",round(Qs,2),"W/sqm "