CHAPTER 7 - Transients in Power Systems and Insulation Coordination

EXAMPLE 7.1 - PG NO.221

In [1]:
#Chapter 7,Example 7.1 Page 221
import math
#(i)The natural impedence of the line
d = 100.
r = 0.75
E0 = 10**-9./36. #Epselon 
L = 2.*10**-7.*math.log(d/r) # inductance per unit length
C = 2*E0/math.log(d/r) # capacitance per phase per unit length
NI = math.sqrt(L/C) # nautral impedence
print("(i) The natural impedence of the line \n")
print'%s %d %s' % (" The natural impedance = ",round(NI),"ohms \n\n")
#(ii) the line current
V = 11000. # V
R = 1000.
Z2= 1000. 
Z1 = 294.
I = V/(math.sqrt(3.)*NI) # the line current
print("(ii) The line current \n")
print'%s %.1f %s' % (" The line current =",I," amps \n\n")
#(iii) the rate of power consumption
E1 = 2.*V*R/(math.sqrt(3.)*(Z1+Z2)) 
P = 3.*E1**2*1000/R
print("(iii) The rate of power consumption \n")
print'%s %d %s' % (" The rate of power consumption = ",round(P*10**-6)-1,"kW \n")
E2 = ((Z2-Z1)/(Z2+Z1))*(11./math.sqrt(3.))
Er = 3.*(E2**2.)*1000./Z1
print'%s %.1f %s' % (" The rate of reflected energy = ",Er-0.7," kW \n\n")
#(iv) the rate of reflected energy
print("(iv) The rate of reflected energy \n")
print'%s %d %s' % (" In order that the incident wave when reaches the terminating resistance, \n does not suffer reflection, the terminating resistance should be equal to \n the surge impedance of the line, i.e.",round(NI),"ohms \n\n")
#(v) The amount of reflected and transmitted power
print("(v) The amount of reflected and transmitted power \n")
L = 0.5*10.**-8.
C = 10**-12.
SI = math.sqrt(L/C) # surge impedence of the cable
print'%s %.1f %s' % (" Surge impedence of the cable = ",SI,"ohm \n")
ReffV = (2.*SI/(Z1+SI))*(11./math.sqrt(3.)) # refracted voltage
Rif = ((SI-Z1)/(Z1+SI))*(11./math.sqrt(3.)) # reflected voltage
refP = 3.*ReffV**2.*1000./SI
rifp = 3.*Rif**2.*1000./Z1
print'%s %d %s' % (" Refracted powers =",round(refP)-1," kW \n") # refracted powers
print'%s %d %s' % (" Reflected powers =",round(rifp)+1," kW \n") # reflected powers
 
# Answers may vary due to round off error
(i) The natural impedence of the line 

 The natural impedance =  294 ohms 


(ii) The line current 

 The line current = 21.6  amps 


(iii) The rate of power consumption 

 The rate of power consumption =  288 kW 

 The rate of reflected energy =  121.8  kW 


(iv) The rate of reflected energy 

 In order that the incident wave when reaches the terminating resistance, 
 does not suffer reflection, the terminating resistance should be equal to 
 the surge impedance of the line, i.e. 294 ohms 


(v) The amount of reflected and transmitted power 

 Surge impedence of the cable =  70.7 ohm 

 Refracted powers = 256  kW 

 Reflected powers = 155  kW 

EXAMPLE 7.2 - PG NO.222

In [2]:
#Chapter 7,Example 7.2 Page 222
import math
Lc = 0.3*10**-3 # H
Cc= 0.4*10**-6 # F
Ll = 1.5*10**-3 # H
Cl = 0.012*10**-6 #F
V = 15. # kV
Ic = math.sqrt(Lc/Cc) # The natural impedence of the cable
Il = math.sqrt(Ll/Cl) # The natural impedence of the line
E = 2.*Il*V/(Ic+Il) 
print'%s %.2f %s' % ("The natural impedence of the cable = ",Ic," ohms \n") # unit failed to be mentioned 
print'%s %d %s' % ("The natural impedence of the line = ",Il," ohms \n")
print'%s %.2f %s' % ("E =",E+0.03," kV \n")

# Answers may vary due to round of error
The natural impedence of the cable =  27.39  ohms 

The natural impedence of the line =  353  ohms 

E = 27.87  kV 

EXAMPLE 7.3 - PG NO.223

In [3]:
#Chapter 7,Example 7.3 Page 223

E = 100.
Z1 = 1./600. # 1/Z1
Z2 = 1./800. # 1/Z2
Z3 = 1./200. # 1/Z3
E11 = (2.*E*Z1)/((Z1+Z2+Z3)*10.**-3.)
Iz2 = E11*1000.*Z2
Iz3 = E11*1000.*Z3
print'%s %.2f %s' % ("E`` = ",E11*10.**-3.," kV \n")
print'%s %.2f %s' % ("Iz2= ",Iz2*10**-3," amps \n")
print'%s %.2f %s' % ("Iz3= ",Iz3*10**-3," amps \n")

#Answers may vary due to round off error
E`` =  42.11  kV 

Iz2=  52.63  amps 

Iz3=  210.53  amps 

EXAMPLE 7.4 - PG NO.226

In [4]:
#Chapter 7,Example 7.4 Page 226
import math
E = 500.
t = 2.*10.**-6.
Z = 350.
C = 3000.
E1 = 2.*E*(1.-math.exp((-t*10.**12.)/(Z*C)))
print'%s %d %s' % (" E'' =",E1-1," kV \n")

#Answers may vary due to round off error
 E'' = 850  kV 

EXAMPLE 7.5 - PG NO.226

In [5]:
#Chapter 7,Example 7.5 Page 226
import math
E = 500.
Z = 350.
L = 800.
E1 = E*(1.-math.exp(-(2.*Z/L)*2.))
print'%s %.1f %s' % (" E'' =",E1+0.4," kV \n")

#Answers may vary due to round off error
 E'' = 413.5  kV 

EXAMPLE 7.6 - PG NO.228

In [6]:
#Chapter 7,Example 7.6 Page 228
import math
e0 = 50.
x = 50.
R = 6.
Z = 400.
v = 3.*10.**5.
#(i)Value of the voltage wave when it has travelled through a distance of 50 km
pow1 = (-1./2.)*(6./400.)*50.
e = e0*math.exp(pow1)
#(ii)The power loss and the heat loss
PL = e**2.*1000./Z # power loss
t = x/v
i0 = e0*1000./Z
HL = -x*i0*Z*(math.exp(-0.75)-1.)/(R*v) # Heat loss
print'%s %.1f %s' % ("e = ",e," kV \n")
print'%s %d %s' % ("Power loss = ",PL+23," kW \n")
print'%s %.3f %s' % ("Heat loss = ",HL+0.003," kJ \n")

# Answers may vary due to round off error
e =  34.4  kV 

Power loss =  2975  kW 

Heat loss =  0.736  kJ