#initialisation of variables
import math
Q = 0.8 #ft**3/sec
w = 62.4 #lb/sec
d1 = 3. #in
d2 = 1.5 #in
#CALCULATIONS
Q1 = Q*w*60/10.
a1 = math.pi*(d1/12.)**2/4.
a2 = math.pi*(d2/12.)**2/4.
v1 = Q/a1
v2 = Q/a2
#RESULTS
print 'Q = %.f gpm'%Q1
print 'v1 = %.1f ft/sec '%(v1)
print 'v2 = %.1f ft/sec '%(v2)
#initialisation of variables
import math
d1 = 12. #in
d2 = 9. #in
z1 = 10. #ft
z2 = 10. #ft
p1 = 15. #lb/in**2
w = 62.4 #lb/ft**3
Q = 2. #cuses
g = 32.2 #ft/sec**2
#CALCULATIONS
v1 = Q/(math.pi*(d1/12.)**2/4.)
v2 = Q/(math.pi*(d2/12.)**2/4.)
p2 = w*(z1-z2+(p1*144/w)+(v1**2/(2*g))-(v2**2/(2*g)))/144
#RESULTS
print 'p2 = %.2f lb/in**2 '%(p2)
# note : answer is slightly differet because of rounding error.
#initialisation of variables
import math
d0 = 4. #ft
d2 = 2. #ft
z0 = 0 #ft
z1 = 5. #ft
z2 = 13. #ft
h = 9.5 #in
w = 62.4 #lb/ft**3
w1 = 30. #lb/ft**3
g = 32.2 #ft/sec**2
r = 0.1
#CALCULATIONS
p2 = -h*34/w1
v2 = math.sqrt(2*g*(z1-p2-z2)/(1+r))
Q = math.pi*(d2/12)**2*v2*w*60/(10*4)
#RESULTS
print 'Discharge = %.f gpm '%(Q)
#initialisation of variables
import math
d1 = 2 #ft
d2 = 3 #ft
v1 = 20 #ft/sec
z1 = 20 #ft
z2 = 0 #ft
h = 5 #ft
w = 62.4 #lb/ft**3
g = 32.2 #ft/sec**2
#CALCULATIONS
Hl = v1**2*0.15/(2*g)
a1 = math.pi*d1**2/4
a2 = math.pi*d2**2/4
v2 = a1*v1/a2
p1 = ((h-z1+(v2**2)/(2*g))-(0.85*v1**2/(2*g)))
#RESULTS
print 'water pressure at top = %.2f ft of water '%(p1)
#initialisation of variables
import math
d1 = 15. #in
d2 = 6. #in
h = 10. #in of mercury
C = 0.98
sm = 13.6
w = 12.
g = 32.2 #ft/sec**2
#CALCULATIONS
a1 = math.pi*(d1/12)**2/4
a2 = math.pi*(d2/12)**2/4
h1 = h*(sm-1)/w
Q = round(C*(a1*a2/(math.sqrt(a1**2-a2**2)))*math.sqrt(2*g)*math.sqrt(h1)*6.24*60*60,-2)
#RESULTS
print 'Discharge = %.f gph '%(Q)
# answer is different because of rounding error. Please calculate manually.
#initialisation of variables
import math
d1 = 8. #in
d2 = 4. #in
h = 10. #in of mercury
Cd = 0.98
g = 32.2 #ft/sec**2
sm = 13.56
#CALCULATIONS
a1 = math.pi*(d1/12)**2/4
a2 = math.pi*(d2/12)**2/4
h1 = h*(sm-1)/12
Q = a1*a2*math.sqrt(2*g)*math.sqrt(h1)/math.sqrt(a1**2-a2**2)
Qactual = Cd*Q
#RESULTS
print 'Actual discharge = %.2f cusecs '%(Qactual)
# Note : Answer is slightly different because of rounding error.
#initialisation of variables
import math
h = 6.8 #in of mercury
sm = 13.6
ssw = 1.026
g = 32.2 #ft/sec**2
#CALCULATIONS
V = math.sqrt(2*g*h*(sm-ssw)/12)*3600/5280
#RESULTS
print 'speed of submarine = %.1f miles per hour '%(V)
#initialisation of variables
import math
g = 32.2 #ft/sec**2
d1 = 2. #in
d2 = 12. #in
r = 1.4
n = 0.905
Q = 2995. #lb/ft**2
w = 0.083 #lb/ft**3
#CALCULATIONS
V1 = round(1/w,2)
n1 = round(n**((r-1)/r),2)
n2 = n**(2/r)
Q = math.pi*(d1/12)**2*math.sqrt(2*g*Q*(1-n1)*r/((r-1)*n2*(1-(d1/d2)**2)))
#RESULTS
print 'Volume of air passing through the Venturimeter = %.1f cuses '%(Q)
# note : answer is different because of rounding error.