#initialisation of variables
Ar = 50 #area of ram in**2
Ap = 1./8 #area of plunger in**2
Wp = 5. #force lbs
#CALCULATIONS
Pp = Wp/Ap
F = Pp*Ar
#RESULTS
print 'weight supported by ram = %.f lbs'%(F)
import math
#initialisation of variables
Dp = 1. #diameter of punger - in
Dr = 10. #diameter of ram - in
R = 12. #leverage of handle
W = 15. #wieght of body - tons
#CALCULATIONS
Ar = math.pi*Dr**2/4
Ap = math.pi*Dp**2/4
P = W*2240/((Ar/Ap)*R)
#RESULTS
print 'power applied to lever = %.f lbs'%(P)
import math
#initialisation of variables
Dj = 1. #diameter of plunger - in
Dr = 2. #in
W = 40. #lbs
W1 = 1. #ton
rl = 20.
#CALCULATIONS
Ap = math.pi*Dj**2/4
Ar = math.pi*Dr**2/4
Vrj = rl*Ar/Ap
e = W1*2240*100/(W*Vrj)
#RESULTS
print 'efficiency of machine at this load = %.f percent'%(e)
#initialisation of variables
Dj = 1. #in
Dr = 2. #in
ns = 3. #strokes
h = 2. #ft
#CALCULATIONS
Ap = math.pi*Dj**2/4
Ar = math.pi*Dr**2/4
Vrj = Ar/Ap
ns1 = h*12*Vrj/ns
#RESULTS
print ' working strokes = %.f strokes'%(ns1)
#initialisation of variables
T = 40. #F
w = 62.4 #lbs/ft**3
h = 50 #ft
#CALCULATIONS
p = w*h/(12**2)
#RESULTS
print ' pressure at a depth of 50 ft = %.2f lbs per in'%(p)
#initialisation of variables
W = 64. #lbs/ft**3
h1 = 27. #ft
h2 = 9. #ft
w = 40. #ft
#CALCULATIONS
Pr = w*W*h1*h1/2
Pl = w*W*h2*h2/2
y1 = h1/3
y2 = h2/3
y = (Pr*y1-Pl*y2)/(Pr-Pl)
#RESULTS
print ' point of application = %.2f ft'%(y)
import math
#initialisation of variables
d = 5. #ft
x = 3. #ft
w = 62.4 #lb/ft**3
a = 90. #degrees
#CALCULATIONS
A = math.pi/4*d**2
b = w*A*x
Ig = round(math.pi*d**4/64,2)
Io = Ig + A*x**2 * 1
h = Io/(A*x)
#RESULTS
print 'depth of the pressure = %.2f ft'%(h)
import math
#initialisation of variables
w = 3. #ft
h = 4. #ft
ht = 30 #ft
W = 62.4 #ft**3
#CALCULATIONS
Ap = w*h
X = ht+(h/2)
P = Ap*X*W
I0 = (w*h**3/12)+Ap*X**2
H = I0/(Ap*X)
#RESULTS
print ' total pressure on the gate = %.2f ft'%(H)
import math
#initialisation of variables
w = 3. #ft
h = 4. #ft
ht = 30. #ft
W = 62.4 #ft**3
x = 2.22 #in
x1 = 4.5 #in
#CALCULATIONS
Ap = w*h
X = ht+(h/2)
P = Ap*X*W
T = P*x/x1
T1 = P-T
#RESULTS
print ' tension devoloped in the top bolt = %.f lbs'%(T)
print ' tension devoloped in the bottom bolt = %d lbs'%(T1)
import math
#initialisation of variables
w = 3. #ft
h = 15. #ft
d = 140. #lbs/ft**3
x = 6. #in
W = 62.4 #lbs/ft**3
#CALCULATIONS
W1 = h*w*d
h = (W1*x*6/(W*12))**(1./3)
#RESULTS
print ' height of water rise = %.2f ft'%(h)
import math
#initialisation of variables
h = 5. #ft
d = 6. #ft
a = 30. #degrees
w = 62.4 #lbs/ft**3
#CALCULATIONS
A = math.pi*d**2/4
X = h+(d/2)*math.sin(math.radians(a))
P = w*A*X
Ic = math.pi*d**4/64
I0 = Ic+A*X**2/(math.sin(math.radians(a)))**2
h = I0*(math.sin(math.radians(a)))**2/(A*X)
#CALCULATIONS
print 'depth of the centre os pressure = %.2f ft '%(h)
import math
#initialisation of variables
w = 4. #ft
l = 4. #ft
X = 10. #ft
a = 45. #degrees
W = 100. #lbs
a1 = 60. #degrees
w1 = 62.4 #lbs/ft**3
#CALCULATIONS
A = w*l
X1 = round(X+(w/2)*math.sin(math.radians(a)),2)
Ig = round(w*l**3/12,2)
I0 = Ig+(A*X1**2/(math.sin(math.radians(a)))**2)
h = I0*(math.sin(math.radians(a)))**2/(A*X1)
P = round(w1*A*X1,-2)
h1 = round(h-X,2)
h2 = round(h1/math.sin(math.radians(a)),2)
T = (W*(l/2)*math.sin(math.radians(a))+P*h2)/(w*math.sin(math.radians(a1)))
#RESULTS
print 'Pull in the chain = %d lbs '%(T)
import math
#initialisation of variables
w = 4. #ft
l = 4. #ft
X = 10. #ft
a = 45. #degrees
W = 62.4 #lbs/ft**3
u = 0.25
#CALCULATIONS
A = w*l
X1 = X+(w/2)*math.sin(math.radians(a))
P = W*A*X1
T = u*P
#RESULTS
print 'magnitude of the lifting force = %.f lbs '%(round(T,-1))
#initialisation of variables
w = 62.4 #lbs/ft**3
sg = 1.6
h = 10. #ft
h1 = 4. #ft
#CALCULATIONS
D = w*sg
W = w*(h+h1)**2/2
P = w*h
P1 = D*h1
P2 = (P*h/2)+P*h1+(h1*P1/2)
y = ((P*h*(h1+(h/3))/2)+P*h1*(h1/2)+P1*h1**2/6)/P2
#RESULTS
print 'Position where P acts = %.1f ft above the base'%(y)
#initialisation of variables
pa = 10. #lbs/in**2
h = 8. #ft
h1 = 6. #ft
w = 62.4 #lbs/ft**3
pg = 10. #lbs/in**2
#CALCULATIONS
Pa = pa*144
Pa1 = w*h1
Pt = (Pa*h+Pa1*(h1/2))
y = (Pa*h*(h/2)+(Pa1*h1*(h-h1)/2))/Pt
#RESULTS
print 'Depth of the centre of pressure = %.2f ft from the base'%(y)
#initialisation of variables
d = 4. #ft
h = 6. #in
#CALCULATIONS
A = math.pi*d**2/4
X = (h-d)
I0 = (math.pi*d**4/64)+4*math.pi*(X)**2
h1 = I0/(A*X)
h2 = d-h1
#RESULTS
print 'Depth of the axis be placed in order = %.1f ft '%(h2)
import math
#initialisation of variables
h = 10 #ft
#CALCULATIONS
x = math.sqrt(h**2/2)
#RESULTS
print 'Depth of the axis be placed in order = %.2f ft '%(x)
import math
#initialisation of variables
h = 8. #ft
h1 = 10. #ft
#CALCULATIONS
A = h
X = (h1/2)
Ig = h**3/12
I0 = Ig+A*X**2
h2 = I0/(A*X)
#RESULTS
print 'depth at which the hinge of the shutter = %.2f ft '%(h2)
import math
from numpy import *
#initialisation of variables
k1 = 1. #ft
k2 = 35.98 #ft
k3 = 66.83 #ft
#CALCULATIONS
vec =roots([k1,0,-k2,k3])
X = vec[1]
#RESULTS
print 'depth of the water = %.2f ft'%(X)
import math
#initialisation of variables
d = 8. #ft
d1 = 2. #ft
h = 4. #ft
h1 = 2 #ft
w = 62.4 #lbs/ft**3
#CALCULATIONS
A1 = math.pi*d**2/4
A2 = math.pi*d1**2/4
A = A1-A2
x = (A1*d-A2*(d+h-h1))/A
P = w*A*x
Ig = ((math.pi*d**4/64)+(A1*(d-x)**2))-((math.pi*d1**4/64)+(A2*(h1+d-x)**2))
h2 = (Ig/(A*x))+x
#RESULTS
print 'depth of the centre of the pressure = %.1f ft '%(h2)
# rounding off error
import math
#initialisation of variables
W = 62.4 #lbs/ft**3
a = 140. #degrees
h = 20. #ft
w = 6. #ft
h1 = 17. #ft
h2 = 5. #ft
#CALCULATIONS
P1 = int(W*h1**2*w/2)
P2 = W*h2**2*w/2
P = P1-P2
y = (P1*(h1/3)-P2*(h2/3))/P
R = P/(2*math.sin(math.radians((180-a)/2)))
Rt = y*R/h
Rb = R-Rt
#RESULTS
print 'Rt = %.f lbs '%(Rt)
print ' Rb = %.f lbs '%(Rb)
# note : incorrect answer for R in the textbook. Hence, the difference in answers
import math
#initialisation of variables
w = 64. #lbs/ft**3
h = 12. #ft
l = 9. #ft
a = 45. #degrees
#CALCULATIONS
P = w*h**2/2
h1 = h/3
Rb = P*h1/l
Ra = P-Rb
Wh = Rb*h1
T = Wh/math.sin(math.radians(a))
#RESULTS
print 'Load on the strut = %d lbs '%(T)
# note : incorrect answer for T in the textbook
#initialisation of variables
w = 62.4 #lbs/ft**3
h = 9. #ft
l = 10. #ft
#CALCULATIONS
P = w*h**2/2
h1 = h/3
Ra = P/2
x = (w*4*h**2/9)/Ra
x1 = x+(h/3)
hb = h1-x
W = Ra*l
#RESULTS
print 'magnitude od total in each beam = %d lbs '%(W)
# note : rounding off error