import math
#initialisation of variables
d = 1. #in
v = 36. #ft/sec
b = 30. #degrees
w = 62.4 #lbs/ft**3
g = 32.2
#CALCULATIONS
a = math.pi/4 * (d/12)**2
thrust = w*a*v**2/g
P = w* math.sin(math.radians(b))*v**2*(math.pi*(d/12)**2/4)/g
#RESULTS
print "The trust when the plate is normal to the jet = %.1f lbs. wt."%thrust
print 'Total thrust on the plate when inclined = %.2f lb wt'%(P)
import math
#initialisation of variables
a = 180. #degrees
g = 32.2 #ft/sec**2
w = 62.4 #lbs/ft**3
d = 1. #in
H = 100. #ft
u = 0.95
#CALCULATIONS
v = u*math.sqrt(2*g*H)
Px = w*(1- math.cos(math.radians(a)))*(math.pi*(d/12)**2/4)*v**2/g
#RESULTS
print 'force it exerts = %.1f lb wt'%(Px)
import math
#initialisation of variables
d = 30. #in
a = 90. #degrees
Q = 62.5 #ft**3/sec
w = 62.4 #lbs/ft**3
n =4.
g =32.2
#CALCULATIONS
v = Q*4/(math.pi*(d/12)**2)
P = w*math.pi*(d/12)**2*v**2/(4*g)
Px = P/n
#RESULTS
print 'pull on each bolt = %.1f lbs'%(Px)
# rounding off error. please check.
import math
#initialisation of variables
d = 4. #in
v = 30. #ft/sec
a = 22.5 #degrees
w = 62.4 #lbs/ft**3
g = 32.2 #ft/sec**2
#CALCULATIONS
P = w*(math.pi*(d/12)**2/4)*v**2*math.sqrt(2*(1-math.cos(math.radians(a))))/g
#RESULTS
print 'Resultant force tending to move the pipe = %.f lbs'%(P)
#ANSWER GIVEN IN THE TEXTBOOK IS WRONG
import math
#initialisation of variables
d = 3. #in
v1 = 80. #ft/sec
v2 = 40. #ft/sec
w = 62.4 #lbs/ft**3
g = 32.2 #ft/sec**2
#CALCULATIONS
vr = v1-v2
P = w*vr*v2*math.pi*(d/12)**2/(g*4)
#RESULTS
print 'normal pressure on the plate when jet strikes = %.1f lbs'%(P)
import math
#initialisation of variables
d = 2. #in
v1 = 50. #ft/sec
v2 = 20. #ft/sec
W = 62.4 #lbs/ft**3
g = 32.2 #ft/sec**2
#CALCULATIONS
vr = v1-v2
P = W*vr*v1*math.pi*(d/2)**2/(g*4)
W = P*v2
KE = 2*vr*v2*100/v1**2
#RESULTS
print 'Efficiency = %.f per cent'%(KE)
import math
#initialisation of variables
d = 1. #in
v = 10. #f/sec
v1 = 30. #ft/sec
w = 62.4 #lbs/ft**3
a = 180. #degrees
g = 32.2 #ft/sec**2
#CALCULATIONS
A = math.pi*(d/12)**2/4
vr = 80-v1
M = w*vr*A
Px = M*vr*(1- math.cos(math.radians(a)))/g
W = Px*v1
M1 = w*80*A
Px1 = M1*vr*(1-math.cos(math.radians(a)))/g
W1 = Px1*v1
#RESULTS
print 'total force when there is a math.single cup = %.1f ft lbs'%(W)
print ' total force when there is a series of cups = %.1f ft lbs'%(W1)
# rounding off error.
import math
#initialisation of variables
v = 100. #ft/sec
u = 40. #ft/sec
a = 25. #degrees
g = 32.2 #ft/sec**2
vr = 66. #ft/sec
a1 = 20. #/degrees
a2 = 8. #degrees
r = 0.14
#CALCULATIONS
Uw = v * math.cos(math.radians(a))
Uv = v * math.sin(math.radians(a))
tanA = Uv/(Uw - u)
A = math.degrees(math.atan(tanA))
v1 = vr*.14/0.342
W = (v**2-v1**2)/(2*g)
e = (v**2-v1**2)*100/v**2
#RESULTS
print 'inlet blade angle = %.2f degrees'%(A)
print ' Work done = %.f ft lbs'%(W)
print ' efficiency = %.2f ft per cent'%(e)
#initialisation of variables
Q = 60. #ft**3/sec
v = 12. #m.p.h
A = 3. #ft**2
D = 64. #lbs/ft**3
g = 32.2 #ft/sec**2
M = 64. #lbs
#CALCULATIONS
vr = Q/A
u = v*44/30
v1 = vr-u
P = M*Q*v1/g
#RESULTS
print 'propelling force = %.1f lbs'%(P)
#initialisation of variables
vr = 20. #f/sec
u = 9. #knots
D = 64. #lbs per cubic foot
g = 32.2 #ft/sec**2
p = 40. #per cent
#CALCULATIONS
u1 = u*6080/3600
v = vr-u1
P = D*2*vr*4.8/g
HP = P*u1/550
HP1 = 100*HP/p
#RESULTS
print 'cylinder H.P = %.2f H.P'%(HP1)
import math
#initialisation of variables
W = 62.4 #lbs/ft**3
A = 4. #ft**2
P = 1000. #lbs
g = 32.2 #ft/sec**2
v = 10. #ft/sec
#CALCULATIONS
vr = math.sqrt(25+(P*g/(W*A)))+5
Q = vr*W*A/10
e = 2*v*100/(vr+v)
#RESULTS
print 'quantity of water pumped = %.1f lbs'%(Q)
print ' efficiency = %.1f per cent'%(e)
import math
#initialisation of variables
g = 32.2 #ft/sec**2
#CALCULATIONS
v = math.sqrt(32*g)
#RESULTS
print 'speed that delivery commence = %.1f ft/sec'%(v)