#variable declaration
f=2*9.8*10**5 # Force in Dynes
A=100.0 # area in cm^2
V=20.0 # velocity in m/sec
l=10.0 # length in cm
#calculation
mu=(f/A)/(V/l)
mu=mu/1000.0
#result
print('The absolute viscosity mu = %.1f*10^5 centipoises'%mu)
#(a)
#variable declaration
v=10.0 # absolute viscosity
#calculation
F=1/v
#result
print('(a)\nFluidity = %.1f rhe'%F)
#(b)
#variable declaration
mu=10.0 # absolute viscosity
rho=0.8 # density in m/cm^3
#calculation
ve=mu/rho
#result
print('\n(b)\nKinematic viscosity (v)= %.1f cm^2/sec'%ve)
#(c)
#variable declaration
ab=1000.0 # absolute viscosity
abwt=1.002 # absolute viscosity of water at 20 deree celcius
#calculation
rv=ab/abwt
#result
print('\n(c)\nRelative viscosity = %d centipoises'%rv)
#(d)
#variable declaration
PAS=10.0
#Result
print('\n(c)\nAbsolute viscosity = 1000 centipoises =10 poises = 1PAS')
import math
#b)
#variable declaration
R=0.5 # radius
L=5 # length
p_diff=800.0 # pressure difference
V=10.0 # volume
#calculation
mu=(math.pi*R**4)*p_diff/(8*V*L)
#result
print('(b)\nmu=%.4f poise =%.2f centipoise'%(mu,mu*100))
import math
#(a)
#variable declaration
g=980.0 # acceleration due to gravity
h=4 # Height
R=0.5 # radius
V=10.0 # volume
l=5.0 # length
t=1.0
#calculation
v=(math.pi*g*h*t*R**4)/(8*l*V)
#result
print('(a)\n v = %.2f stokes'%v)
#calculation
mu=0.3925
rho=mu/v
#result
print('\n(b)\n Density of the fluid rho = %.3f gm/cm^3'%rho)
#variable declaration
#(a)
A=0.226 # value of A as per equation
B=195.0 # value of B as per equation
t=60.0 # Efflux time
#calcullation
v=A*t-B/t
A1=0.220
B1=135.0
t1=140.0
v1=A1*t1-B1/t1
#result
print('(a) Fluid X\n v = %.2f centipoises'%v)
print('\n(b)Fluid Y\n v = %.1f centipoises'%v1)
import math
#variable declaration
t=12.0 # time interval of falling ball in sec
Rsb=7.0 # Specific gravity of ball
Rsf=1.12 # Specific gravity of fluid
B=1.5 # Ball constant in centipoises
#calculation
mu=t*(Rsb-Rsf)*B
#result
print('mu= %.2f centipoises = %d centipoises(approx)'%(mu,math.ceil(mu)))
#(a)
#variable declaration
B=45.0 # dry bulb temperature
W=25.0 # wet bulb temperature
#result
print('\n(b)\nPsychromatic differential : %d°C'%(B-W))
print('\n Relative humidity is 80%% corresponding to')
print(' \ntemperature 45°C and psychromatic differential 20°C')
#(b)
#variable declaration
B1=30.0 # dry bulb temperature
W1=27.0 # wet bulb temperature
#result
print('\n(b)\nPsychromatic differential : %d°C'%(B1-W1))
print('\n Relative humidity is 80%% corresponding to')
print(' \ntemperature 30°C and psychromatic differential 3°C')
#variable declaration
D=80.0 # intersection point of DB temperature
W=66.5 # intersection point of WB temperature
#Result
#(a)
print('(a)\nThe intersection point of DB temperature 80°F and WB temperature 66.5°F')
print(' \nlines on the relative humidity curve for 50%.\n RH = 50%')
#(b)
print('\n(b)\nFrom the point of intersection of the dry and wet bulb curves, move left')
print(' \nhorizontally to the dew point temperature curve where it meets at 60°F')
print('\nDew Point = 60°F')
#(c)
print('\n(c)\nFrom the point of intersection of the dry and wet bulb curves,')
print('\nhorizontally to the right to the moisture content plot where it meets at 76.')
print('\nMoisture Content : 76 grains of water per pound of dry air.')
#variable declaration
wt_vap=500.0 # Amount of water vapour present
wt_vap_to_sat=1500.0 # Amount of water vapour added to saturate
#calculation
total=wt_vap+wt_vap_to_sat
Rh=(wt_vap/total)*100
#result
print('RH = %d%%'%Rh)
#variable declaration
pv=30.0 # partial pressure of water vapour
ps=60.0 # Saturation partial pressure
#calculations
Rh=(pv/ps)*100
#Result
print('%%RH = %d%%'%Rh)
#variable declaration
i1=250.0 # ionazation current
i2=350.0 # ionazation current
#calculation
m=(i2-i1)*100/i1
#result
print('%% increase in moisture content = %d%%'%m)
#variable declaraton
i2=150.0 # wet weight
i1=125.0 # dry weight
#calculation
m=(i2-i1)*100/i1
#result
print('Moisture percentage = %d%%'%m)