import math
#initialisation of variables
n=10.0**20
q=1.6*10**-19
mn=800 #cm^3
delta=1 #V/cm
#Calculations
J=n*q*mn*delta
#Results
print("The electron current density is= %.2f X 10^4 atom/cm^2 " %(J/(10**4)))
import math
#initialisation of variables
ni=10.0**10
Nd=10**12
#Calculations
n=(Nd+(math.sqrt(Nd+4*ni**2)))
#Results
print("The free electron is= %.3f X 10^12 cm^3 " %(n/(10**12)))
import math
#initialisation of variables
ni=10.0**10
Nd=10**18
#Calculations
n=(Nd+(math.sqrt(Nd+4*ni**2)))
#Results
print("The free electron is= %.2f X 10^18 cm^3 " %(n/(10**18)))
import math
#initialisation of variables
Av=6.02*(10**23) #Avogadro No.
m=72.6 #Molar mass of germanium in gm/moles
d=5.32 #density in gm/cm^3
#Calculations
conc = (Av/m)*d #Concentration of atom in germanium
#Results
print("The concentration of germanium atom is= %.2f X 10^22 atom/cm^3 " %(conc/(10**22)))
import math
#initialisation of variables
Av=6.02*(10**23) #Avogadro No.
m=72.6 #Molar mass of germanium in gm/moles
d=5.32 #density in gm/cm^3
ni=2.5*(10**13) #in cm^-3
n=ni
p=ni #n=magnitude of free electrons, p=magnitude of holes, ni=magnitude of intrinsic concentration
#Calculations
q=1.6*(10**-19) #Charge of an Electron
yn=3800.0 #in cm^2/V-s
yp=1800.0 #in cm^2/V-s
#Required Formula
A=ni*q*(yn+yp) #Conductivity
print("Conductivity is = %.2f ohm-cm^-1 " %A)
R =1.0/A #Resistivity
print("Resistivity is = %.2f ohm-cm " %R)
import math
#initialisation of variables
print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')
#Resistivity if 1 donor atom per 10^8 germanium atoms
Nd=4.41*(10**14) #in atoms/cm^3
ni=2.5*(10**13) #in cm^3
yn=3800.0 #in cm^2/V-s
#Calculations
q=1.6*(10**-19)
n=Nd
p=(ni**2)/Nd
print("The concentration of holes is= %.2f holes/cm^3 " %p)
if n>p:
A=n*q*yn #Conductivity
print("The conductivity is = %.2f ohm-cm^-1 " %A)
R=1.0/A #Resistivity
#Results
print("The resistivity is = %.2f ohm-cm " %R)
import math
#initialisation of variables
print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')
#Ratio of Conductivities
Nd=4.41*(10**14) #in atoms/cm^3
ni=2.5*(10**13) #in cm^3
yn=3800.0 #in cm^2/V-s
q=1.6*(10**-19)
#Calculations
n=Nd
A=n*q*yn #Conductivity
#If germanium atom were monovalent metal , ratio of conductivity to that of n-type semiconductor
n=4.41*(10**22) #in electrons/cm^3
#Results
print('If germanium atom were monovalent metal')
A1=n*q*yn
print("The coductivity of metal is= %.2f ohm=cm^-1 x 10^7 " %(A1/10**7))
F=A1/A
print("The factor by which the coductivity of metal is higher than that of n type semiconductor is %.2f x 10^8 " %(F/10**8))
import math
#initialisation of variables
g=5*10**21 #Generation rate
tp=2*10**-6 #hole lifetime
#Calculations
p=g*tp
#Required Formula
print("Hole density is = %.2f cm^3 10^16 " %(p/10**16))