import math
#initialisation of variables
Vr=0.6 #v
#Calculations
i=(1-Vr)/2.01
#Results
print("The current i is= %.2f mA " %(i))
import math
#initialisation of variables
Vr=0.7 #v
#Calculations
i2=((1-Vr)/300.0*10**3)
i1=3-i2
#Results
print("The current i is= %.2f mA " %(i1))
import math
#initialisation of variables
Rl=9.0 # kohm
R=1.0 # kohm
Vr=1.0 #v
#Calculations
v0=(Rl/(R+Rl))*Vr
#Results
print("The output voltage is= %.2f V " %(v0))
import math
#initialisation of variables
Vs=1.0 #v
Rc=100.0 #ohm
RL=1000 #ohm
#Calculations
Vcmin=Vs*(2+(Rc/RL))
#Results
print("The concentration of germanium atom is= %.2f X 10^22 atom/cm^3 " %(Vcmin))
import math
#initialisation of variables
Vrms=220.0 #v
Rf=10.0
Rl=500.0
#Calculations
Im=(math.sqrt(2.0)*Vrms)/(Rf+Rl)
Idc=Im/math.pi
Irms=Im/2
Vdc=(-Im*Rl)/math.pi
pd=Vrms*Irms
reg=Rf/Rl*100
#Required Formula
print("Peak load current is = %.2f A " %Im)
print("DC load current is = %.2f A " %Idc)
print("RMS load current is = %.2f A " %Irms)
print("The dc diode voltage is = %.2f V " %Vdc)
print("The total input power to the curcuit is = %.2f A " %pd)
print("percentage regulation will go from 0 percent to %.f percent " %reg)
import math
#initialisation of variables
RL=100.0 #ohm
Rf=10.0 #ohm
Vm=5.0 #v
Vr=0.6 #v
#Calculations
Vdc=2*(((Vm/math.pi)*(RL/(RL+Rf)))-Vr)
#Results
print("The dc output voltage is = %.2f v " %Vdc)