import math
# Variables
A=5.*4 #in m2
T1=100.; #in K
T2=30.; #in K
# Calculations
delta_T=T1-T2;
x=0.25 #in m
k=0.70 #in W/mK
Q=k*A*(delta_T/x);
# Results
print "rate of heat loss = %f W"%(Q)
import math
# Variables
d1=0.15 #in m
d2=0.16 #in m
l=1. #in m
# Calculations
A1=3.14*d1*l;
A2=3.14*d2*l
Am=(A1-A2)/math.log (A1/A2);
T1=120.; #in K
T2=119.8; #in K
delta_T=T1-T2;
x=(d2-d1)/2;
k=50. #in W/mK
Q=k*Am*(delta_T/x);
# Results
print "rate of heat loss per unit length = %f W/m"%(Q)
import math
# Variables
ri=0.5 #in m
ro=0.6; #in m
A1=4*3.14*ri**2;
A2=4*3.14*ro**2;
# Calculations
Am=(A1*A2)**0.5;
Ti=140.; #in K
To=50.; #in K
delta_T=Ti-To;
x=0.1 #in m
k=0.12 #in W/mK
Q=k*Am*(delta_T/x);
# Results
print "Heat loss through sphere = %f W"%(Q)
import math
# Variables
x1=0.250; #in m
k1=0.7; #in W/mK
A1=1.; #in m2
R1=x1/(k1*A1); #in K/W
# Calculations and Results
#for the felt layer
x2=0.020; #in m
k2=0.046; #in W/mK
A2=1.; #in m2
R2=x2/(k2*A2); #in K/W
R=R1+R2;
print "Total resistance = %f K/W"%(R)
T1=110.; #in K
T2=25. #in K
delta_T=T1-T2;
Q=delta_T/R;
print "heat loss through wall = %f W/square m"%(Q)
import math
# Variables
d1=0.15 #in m
d2=0.16 #in m
l=1. #in m
A1=3.14*d1*l;
A2=3.14*d2*l
Am1=(A2-A1)/math.log (A2/A1);
x1=(d2-d1)/2.;
k1=50. #in W/mK
R1=x1/(k1*Am1);
# Calculations and Results
#resistance by insulation
d2=0.16 #in m
d3=0.26 #in m
l=1. #in m
A2=3.14*d2*l;
A3=3.14*d3*l
Am2=(A3-A2)/math.log (A3/A2);
x2=(d3-d2)/2.;
k2=0.08 #in W/mK
R2=x2/(k2*Am2);
R=R1+R2;
print "total resistance = %f K/W"%(R)
T1=120.; #in K
T2=40.; #in K
delta_T=T1-T2;
Q=delta_T/R;
print "heat loss = %f W/m"%(Q)
import math
# Variables
x1=0.1; #in m
x2= 0.25; #in m
k_rb=0.93; #in W/mK
k_ib=0.116 #in W/mK
k_al=203.6 #in W/mK
A=0.1 #in m2
# Calculations and Results
#to find resistance without rivets
R=(1/A)*((x1/k_rb)+(x2/k_ib));
T1=225 #in K
T2=37 #in K
delta_T=T1-T2;
Q=delta_T/R;
print "heat transfer rate = %f W"%(Q)
#to find resistance with rivet
d=0.03 #in m
rivet_area= (3.14/4)*d**2;
R_r=(x1+x2)/(k_al*rivet_area);
area_norivet=A-rivet_area;
R_cl=(A/area_norivet)*R;
R_eq=1/(1/R_r+1/R_cl);
Q_new=delta_T/R_eq;
print "Rate of heat transfer with rivet = %f W"%(Q_new)
increase=((Q_new-Q)/Q)*100;
print "percentage increase in heat transfer rate = %f"%(increase)
import math
# variables
Cp = 4.178 # kJ/kg K for water
q = 1838. # rate at which heat is transfered
A = .1005 # heat transfer area
dt1 = 80. - 24 # temperature diffference at hot end
dt2 = 36.-24 # temperature difference at cold end
# Calculations and Results
dtm = (56 + 12)/2.0
h = q/(A*dtm)
print "Heat transfer coefficient, h = %.0f W/m**2 K"%h
dtm = (56 - 12)/math.log(56/12.)
h = q/(A*dtm)
print "h = %.0f W/m**2 K"%h
import math
# Variables
density=984.1 #in kg/cubic meter
v=3. #in m/s
viscosity=485*10**-6; #in Pa-s
k=0.657 #in W/mK
cp=4178. #in J/kg K
d=0.016 #in m
# Calculations and Results
Re=(density*v*d)/viscosity;
Pr=(cp*viscosity)/k;
#dittus boelter equation
h=0.023*Re**0.8*Pr**0.3*(k/d);
print "heat transfer coefficient = %f W/sq meter K"%(h)
#Sieder Tate equation
viscosity_w=920*10**-6.
h1=0.023*Re**0.8*Pr**(1./3)*(k/d)*(viscosity/viscosity_w)**0.14;
print "heat transfer coefficient = %f W/sq meter K"%(h1)
import math
# Variables
T_sun = 5973 #in degree C
d = 1.5*10**13 #in cm
R = 7.1*10**10; #in cm
# Calculations
T_earth = ((R/(2*d))**0.5)*T_sun;
# Results
print "Temperature of earth = %f C"%(T_earth-273)
import math
# Variables
R=7*10**10; #in cm
Ts=6000; #in K
# Calculations
l=1.5*10**13; #in m
To=((R**2/(4*l**2))**0.25)*Ts;
# Results
print "temperature of earth = %f K"%(To)
import math
# Variables
R=6.92*10**5 #in km
l=14.97*10**7 #in km
Ts=6200; #in K
# Calculations
To=(R**2/l**2)**0.25*Ts;
# Results
print "Equilibrium temperature = %f K"%(To)
import math
# Variables
view_factor=0.5;
R=6.92*10**5 #in km
l=14.97*10**7 #in km
Ts=6200; #in K
# Calculations
To=(view_factor*(R**2/l**2))**0.25*Ts;
# Results
print "Equilibrium temperature = %f K"%(To)
import math
# Variables
view_factor=0.25;
R=7.1*10**10 #in cm
l=1.5*10**13 #in cm
Ts=5973; #in K
alpha=0.2;
epsilon=0.1;
# Calculations
ratio=alpha/epsilon;
To=(ratio*view_factor*(R**2/l**2))**0.25*Ts;
# Results
print "Equilibrium temperature = %f K"%(To)
import math
# Variables
R=7*10**10; #in cm
l=1.5*10**13; #in cm
sigma=5.3*10**-5; #in erd/s(cm2)(K)4
T=6000; #in K
# Calculations
S=(R/l)**2*(sigma)*(T**4)*60;
# Results
print "solar constant = %f J/sq cm min"%(S/10**7)
import math
# Variables
F = 5000. #in kg/hr
xF = 0.01
xL = 0.02;
# Calculations and Results
L = F*xF/xL;
V = F-L;
print "L = %f Kg/hr V = %f kg/hr"%(L,V)
TF= 303 #in K
hF = 125.9 #in KJ/kg
T1 = 373.2 #in K
Hv = 2676.1 #in kJ/kg
hL = 419.04; #in kJ/kg
Ts = 383.2 #in K
Hs = 2691.5 #in kJ/kg
hs = 461.30 #in kJ/kg
S = (F*hF-L*hL-V*Hv)/(hs-Hs);
print "amount of steam = %f kg steam/h"%(S)
q = S*(Hs - hs);
q = q*1000/3600 #conversion to Watt
U = q/(69.9*10);
print "heat transfer coefficient = %f W/sq m K"%(U)
import math
from numpy import *
# Variables
b1 = 6000*125.79+3187.56*2691.5-3187.56*461.30; #data from previous problem
b2 = 6000;
A = array([[419.04, 2676.1],[1, 1]])
# Calculations and Results
b = array([[b1],[b2]]);
x = linalg.solve(A,b)
#x = x*b
L = x[0];
V = x[1];
print "L = %f kg/hrV = %f kg/hr"%(L,V)
F = 6000 #in kg/hr
xF = 0.01;
xL = F*xF/L;
print "percentage increase in outlet concentration = %f"%(xL*100)
import math
# Variables
Hv=2635.3 #kJ/kg
hL=313.93 #in kJ/kg
# Calculations and Results
S=(2500*313.93+2500*2635.3-5000*125.79)/(2691.5-461.30);
print "steam flow rate = %f kg steam/hr"%(S)
q = S*(2691.5 - 461.30);
q = q*1000./3600 #in W
U = 2833.13; #in W/m2 K
delta_T = 383.2-348.2; #in K
A = q/(U*delta_T);
print "Area = %f sq meter"%(A)
print "in this case a condensor and vaccum pump should be used"
# Note : there is mistake in calculation in Book. Please calculate manually.