#Variable declaration
ch=12400.0 #product of speed of light and Plank's constant (eV*Å)
lembda1=0.024 #Compton wavelength of X-ray (Å)
lembda2=1.0 #wavelength of X-ray (Å)
#Calculation
#(i)
x1=ch/lembda1 #minimum voltage across X-ray tube (V)
#(ii)
x2=ch/(lembda2*10**3) #minimum voltage across X-ray tube (kV)
#(iii)
x3=1.02 #minimum energy of X-ray photon (M*eV)
#Result
print"\n(i) voltage =%.2e"%x1,"V\n(ii) voltage =",x2,"KV\n(iii) energy =",x3,"MeV"
print"NOTE:Wrong answer of (i) in book"
#Variable declaration
n=3/2.0
dlembda=26*10**-2 #shifting in short wave limit of X-ray spectrum (Å)
ch=12400 #product of speed of light and Plank's constant (eV*Å)
e=1.6*10**-19 #charge of electron (Coulomb)
#Calculation
V=((n-1)/n)*(ch/(dlembda*10**3)) #initial voltage applied to the tube (KV)
#Result
print"\nInitial voltage =",round(V,1),"KV"
#Variable declaration
R=10972900.0 #(m-1)
lembda=1.54*10**-10 #wavelength of K line (m)
#calculation
import math
z=1+math.sqrt(4.0/(3.0*lembda*R)) #atomic number of the target element
#Result
print"\nZ =",round(z)
#Variable declaration
z1=29.0 #atomic no. of Copper
z2=26.0 #atomic no. of Iron
lembda1=193.0 #wavelength of K line in Iron (pm)
#calculation
lembda=((z2-1)/(z1-1))**2*lembda1 #wavelength of K line in Copper (pm)
#Result
print"\nλ =",round(lembda),"pm"
#Variable declaration
z1=13 #atomic no. of Al
z2=27 #atomic no. of Co
R=1.097*10**7 #(m-1)
#calculation
lembda1=(4*10**12)/(3*R*(z1-1)**2) #wavelength of K line in Al (pm)
lembda2=(4*10**12)/(3*R*(z2-1)**2) #wavelength of k line in Co (pm)
#Result
print"\n wavelength of Al =",round(lembda1),"pm\n wavelength of Co =",round(lembda2),"pm"
#Variable declaration
lembda1=250.0*10**-12 #wavelength of K-alpha line (m)
lembda2=179.0*10**-12 #wavelength of K-alpha line (m)
R=10972900.0 #(m-1)
#calculation
import math
z1=int(1+math.sqrt(4/(3*lembda1*R))) #atomic number
z2=int(1+math.sqrt(4/(3*lembda2*R)))
#Result
print"\nThe required elements are: Z ="
for i in range(z1+1,z2):
print i
#Variable declaration
ch=12400.0 #product of speed of light and Plank's constant (eV*Å)
Rch=13.6 #product of speed of light, Plank's constant and R (eV)
z=23.0 #atomic no. of vanadium
lembda=24.0 #wavelength of L absorption edge (Å)
#calculation
El=ch/(lembda*1000) #binding energy of L electron (KeV)
Ek=((3/(4.0*10**3))*Rch*(z-1)**2)+El #binding energy of K electron (KeV)
#Result
print"\nBinding energy of K-electron =",round(Ek,2),"KeV"
print"NOTE:Approxmiate answer given in book"
#Variable declaration
ch=12.4 #product of speed of light and Plank's constant (KeV*Å)
lembda1=0.178 #wavelength of K-alpha line (Å)
lembda2=0.210 #wavelength of K line (Å)
#calculation
Ek=ch/lembda1 #binding energy of K electron (KeV)
El=Ek-(ch/lembda2) #binding energy of K-alpha electron (KeV)
lembda=ch/El #wavelength of L absorption edge (Å)
#Result
print"\nWavelength of L absorption edge =",round(lembda,2),"Å"
#Variable declaration
ch=12.4 #product of speed of light and Plank's constant (KeV*Å)
lembdak=0.18 #wavelength of K absorption edge (Å)
lembda=0.1 #wavelength of incident photon (Å)
#calculation
Ek=ch/lembdak #binding energy of K electron (KeV)
E=ch/lembda #energy of incident photon (KeV)
K=E-Ek #maximum kinetic energy of ejected electron (KeV)
#Result
print"KE =",round(K,2),"KeV"
#Variable declaration
ch=12.4 #product of speed of light and Plank's constant (KeV*Å)
Rch=13.6/10**3 #product of speed of light, Plank's constant and R (KeV)
lembdak=1.74 #K band absorption edge wavelength of iron (Å)
z=30 #atomic no. of zinc
#calculation
Ek=ch/lembdak #binding energy of K electron in iron (KeV)
E=(3.0/4.0)*Rch*(z-1)**2 #energy of photon of K-alpha radiation (KeV)
K=E-Ek #kinetic energy of the photoelectrons liberated from iron (KeV)
#Result
print"KE =",round(K,3),"KeV"