Chapter 5: CONTROL VOLUME ANALYSIS USING ENERGY

Example 5.01, page: 98

In [1]:
from __future__ import division
import math

# Initialization  of  Variable
P1 = 7 #bar
T1 = 200 #deg C
m1dot = 40 #kg/s
P2 = 7 #bar
T2 = 40 #degC
A2 = 25 #cm2
P3 = 7 #bar
vdot = 0.06 #m3/s

#calculations:
#from Table T-3, specific vol
v3 = 1.108E-3 #m3/kg
m3dot = vdot/v3

m2dot = m3dot - m1dot

#from table T-2,
v2 = 1.0078E-3 #m3/kg
V2 = m2dot*v2*10000/A2

#Results
print  "mass  flow  rate at inlet 2 is", round(m2dot,2),"kg/s and at exit is",round(m3dot,2),"kg/s"
print  "velocity at inlet 2 is", round(V2,1),"m/s"
mass  flow  rate at inlet 2 is 14.15 kg/s and at exit is 54.15 kg/s
velocity at inlet 2 is 5.7 m/s

Example 5.02, page: 99

In [12]:
from __future__ import division
import math
%pylab inline

# Initialization  of  Variable
midot = 30 #lb/s
A = 3 #ft2
p = 62.4 #lb/ft2

#calculations:
#creating empty lists for plotting
L = []
t = []

for h in range(1200):
    t.append((h-1)/10)
    k=(h-1)/10
    L.append(3.33*(1 - math.e**(-9*k/(p*A))))

#Results
# plots
fig  = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(t,L)
xlabel('Time, s')
ylabel('Height, ft')
title('Liquid Height vs Time')
show()
Populating the interactive namespace from numpy and matplotlib

Example 5.03, page: 105

In [2]:
from __future__ import division
import math

# Initialization  of  Variable
P1 = 40 #bar
T1 = 400 #degC
V1 = 10 #m/s
P2 = 15 #bar
V2 = 665 #m/s
mdot = 2 #kg/s

#calculations:
#specific potential energy at 1 is
h1 = 3213.6 #kJ/kg
#at 2
h2 = h1 + (V1**2 - V2**2)/2

#From Table T-4
v2 = 0.1627 #m3/kg

#exit area:
A2 = mdot*v2/V2

#Results
print  "Exit Area is", round(A2,6),"m2"
Exit Area is 0.000489 m2

Example 5.04, page: 107

In [3]:
from __future__ import division
import math

# Initialization  of  Variable
mdot = 4600 #kg/h
Wdot = 1000 #kW
P1 = 60 #bar
T1 = 400 #degC
V1 = 40 #m/s
P2 = 0.1 #bar
x2 = 0.9
V2 = 50 #m/s

#calculations:
#from table T-4, specific enthalpy
h1 = 3177.2 #kJ/kg
#From table T-3,
hf2 = 191.83 #kJ/kg
hg2 = 2584.63 #kJ/kg

h2 = hf2 + x2*(hg2-hf2)

#rate of heat transfer
Qdot = Wdot + mdot*(h2 - h1 + (V2**2 - V1**2)/2000)/3600

#Results
print  "rate of heat transfer is", round(Qdot,1),"kW"
#answer wrong in book
rate of heat transfer is -62.3 kW

Example 5.05, page: 109

In [4]:
from __future__ import division
import math

# Initialization  of  Variable
P1 = 1 #bar
T1 = 290 #K
V1 = 6 #m/s
A1 = 0.1 #m2
P2 = 7 #bar
T2 = 450 #K
V2 = 2 #m/s
Qdot = -180 #kJ/min
R = 8314/28.97 #J/kg-K

#calculations:
#specific volume at 1
v1 = R*T1/P1
#mass flow rate
mdot = A1*V1*1E5/v1

#from table T-9
h1 = 290.16 #kJ/kg
h2 = 451.8 #kJ/kg
#power required by the compressor
Wdot = Qdot/60 + mdot*((h1-h2) + (V1**2 - V2**2)/2000)

#Results
print  "power required by the compressor is", round(Wdot,1),"kW" 
power required by the compressor is -119.5 kW

Example 5.06, page: 110

In [5]:
from __future__ import division
import math

# Initialization  of  Variable
T1 = 20 #degC
P1 = 1 #atm
Vdot = 0.1 #lt/s
D1 = 2.5 #cm
T2 = 23 #degC
V2 = 50 #m/s
z1 = 0 #m
z2 = 5 #m
x2 = 0.1
c = 4.18 #kJ/kg-K
g = 9.81 #m/s2

#cqlculations:
#from Table T-2, Specific volume at 1
v = 1.0018E-3 #m3/kg
#mass flow rate
mdot = Vdot*1E-3/v
#inlet Area
A1 = math.pi*(D1**2)/4
#inlet velocity
V1 = Vdot/A1

# power
Wdot = (mdot/(1 - x2))*(c*(T1-T2) + (V1**2 - V2**2)/2000 + g*(z1 - z2)/1000)

#Results
print  "power input is", round(Wdot,2),"kW"
power input is -1.53 kW

Example 5.07, page: 111

In [6]:
from __future__ import division
import math

# Initialization  of  Variable
P1 = 0.1 #bar
x1 = 0.95
P2 = 0.1 #bar
T2 = 45 #deg C
T3 = 20 #degC
T4 = 35 #degC

#calculations:
#assumption
Wdot = 0
#from table T-3,
hf1 = 191.83 #kJ/kg
hf2 = 188.45 #kJ/kg
hg1 = 2584.7 #kJ/kg
h4_3 = 62.7 #kJ/kg
#specific enthalpy
h1 = hf1 + x1*(hg1-hf1)
h2 = hf2

#ratio of mdots
m3dot_m1dot = (h1 - h2)/h4_3

#rate of energy transfer from the condensing steam to the cooling water
Qdotm = h2 - h1

#Results
print  "a) ratio of the mass flow rate of the cooling water to the mass flow rate of the condensing stream is", round(m3dot_m1dot,1)
print  "b) rate of energy transfer from the condensing steam to the cooling water is",round(Qdotm,1),"kJ/kg" 
a) ratio of the mass flow rate of the cooling water to the mass flow rate of the condensing stream is 36.3
b) rate of energy transfer from the condensing steam to the cooling water is -2276.6 kJ/kg

Example 5.08, page: 113

In [7]:
from __future__ import division
import math

# Initialization  of  Variable
T1 = 20 #degC
P1 = 1 #bar
V1 = 1.3 #m/s
T2 = 32 #degC
Pc = -80 #W
Pf = -18 #W
Cp = 1.005 #kJ/kg-K
R = 8314/28.97 #J/kg-K

#calculations:
#assumptions
Qdot = 0
Wdot = Pc + Pf
#inlet Area
A1 = (1/V1)*(-1*Wdot/(Cp*(T2 - T1)*1000))*R*(T1+273)/101325

D1 = ((4*A1/math.pi)**0.5)*100



#Results
print  "smallest fan inlet diameter is", round(D1,0),"cm"
smallest fan inlet diameter is 8.0 cm

Example 5.09, page: 115

In [8]:
from __future__ import division
import math

# Initialization  of  Variable
P1 = 300 #lbf/in2
P2 = 14.7 #lbf/in2
T2 = 250 #degF

#calculations:
#From  TAble T-3E
hf1 = 394.1 #Btu/lb
hg1 = 1203.9 #Btu/lb
#from Table T-4E
h2 = 1168.8 #Btu/lb
#Quality factor
x1 = (h2-hf1)/(hg1-hf1)

#Results
print  "quality in the line is", round(x1*100,1),"%"
quality in the line is 95.7 %

Example 5.10, page: 117

In [9]:
from __future__ import division
import math

# Initialization  of  Variable
AV1 = 2E5 #ft3/min
T1 = 400 #degF
P1 = 1 #atm
T2 = 260 #degF
P2 = 1 #atm
P3 = 40 #lbf/in2
T3 = 102 #degF
m3dot = 275 #lb/min
P5 = 1 #lbf/in2
x5 = 0.93
cost = 0.08 #$/W
t = 8000 #hrs
R = 1545/28.97 #ft.lbf/lb-degR

#calculations:
#in Rankine
T1r = (((T1-32)*5/9)+273)*1.8
#mass flow rate at 1
m1dot = AV1*(P1*14.7)*144/(R*T1r)
#from Table T-9E
h1 = 206.46 #Btu/lb
h2 = 172.39 #Btu/lb
#From Table T-2E
h3 = 70 #Btu/lb
#From Table T-3E
hf5 = 69.74 #Btu/lb
hg5 = 1105.74 #Btu/lb
#enthapy at 5
h5 = hf5 + x5*(hg5-hf5)
#Power
Wdot = m1dot*(h1-h2) + m3dot*(h3 - h5)

#for temp T4
h4 = h3 + (m1dot/m3dot)*(h1-h2)
#from Table T-4E
P4 = 40 #lbf/in2
T4 = 354 #degF

#total cost
AnnVal = (Wdot*60/3413)*t*cost


#From  TAble T-3E
hf1 = 394.1 #Btu/lb
hg1 = 1203.9 #Btu/lb
#from Table T-4E
h2 = 1168.8 #Btu/lb
#Quality factor
x1 = (h2-hf1)/(hg1-hf1)

#Results
print "a) power developed by the turbine is", round(Wdot,0),"Btu/min"
print "b) Turbine Inlet temperature is", T4,"degF"
print "c) Annual Value of power developed is", round(AnnVal,0),"$/year"
#Answer wrong in book
a) power developed by the turbine is 49822.0 Btu/min
b) Turbine Inlet temperature is 354 degF
c) Annual Value of power developed is 560548.0 $/year