# Given data
Rf = 50*10**3
R1 = 40*10**3
R2 = 25*10**3
R3 = 10*10**3
R4 = 20*10**3
R5 = 30*10**3
# Solution
R = (R1 * R2)/(R1 + R2)
Vo11 = (R + Rf)/R
def Vo(V1,V2,V3,V4):
return -1.25*V1 - 2.0*V2 + 2.32*V3 + 1.16*V4
Vo1 = Vo(2,3,4,5)
#Dispalying the output
print "The value of Vo = ",Vo1,"V"
%matplotlib inline
import math
from pylab import figure, show
import numpy as np
# Given data
fmax = 100
Vp = 1
# solution part a
C1 = 0.1*10**-6 # Set it as the capacitance value.
Rf = 1/(2*math.pi*fmax*C1)
fb = 10*fmax
R1 = 1/(2*math.pi*fb*C1)
Cf = R1 *C1/Rf
# Solution part b
fig = figure(1)
t = np.linspace(0,20*10**-3)
ax1 = fig.add_subplot(211)
ax1.plot(t,np.sin(628*t))
ax1.set_ylabel('Voltage vi (v)')
ax1.set_xlabel('Time(t)')
ax1.set_title('A sine input wave')
ax2 = fig.add_subplot(212)
ax2.plot(t,-np.cos(628*t))
ax2.set_ylabel('Voltage vi (v)')
ax2.set_xlabel('Time(t)')
ax2.set_title('A cosine output wave')
show()
%matplotlib inline
import matplotlib.pylab as plt
import numpy as np
# Given Data
R1 = 10*10**3
Rf = 100*10**3
Cf = 10*10**-9
# Solution - Finding the frequency limit of integration fa
fa = int(1/(2*np.pi*Rf*Cf))
print "The value of lower frequency limit of integration is =",fa,"Hz"
# Studying the response of sine wave input
V = 1
f = 5*10**3
vo = round(1/(R1*Cf*2*np.pi*5000),3)
x = np.linspace(-np.pi,np.pi,201)
plt.plot(x,vo*np.cos(2*np.pi*f*x))
plt.xlabel('Time')
plt.ylabel('Voltage')
plt.show()
import math
#Given data
w = 10000
Apeak = 20
A = 3
C = 0.1*10**-6
# Solution
Rf = math.sqrt(1/((10**-4)**2))
R1 = Rf/10
# Displaying the values
print "The value of Rf = ",int(Rf/10**3),"Kilo Ohms"
print "The value of R1 = ",int(R1/10**3),"Kilo Ohms"
import numpy as np
# defining two functions
def x(t):
return 10*np.sin(3*t)
def x1(t):
return 30*np.cos(3*t)
print " The value of x(0) = ",int(x(0))
print " The value of defferential x(0) =",int(x1(0))