#Variable Declaration:
Vz1=5.5 #Volatage in volt
Vz2=5.5 #Voltage in volt
Aol=100000.0 #Open loop gain
Vd=0.7 #Voltage in volt
#Calculations:
Vo=Vz1+Vd # Plus or minus
Vich=Vo/Aol #Calculating change in voltage
Vich=Vich*1000.0 #Calculating change in voltage
#Results:
print('Delta Vi=%.3f mV'%Vich)
#Variable Declaration:
R1=56.0*10**3 #Resistance value in ohm
R2=150.0 #Resistance value in ohm
Vi=1.0 #Voltage in volt
f=50.0 #Frequency in hertz
Vsat=13.5 #Voltage in volt
Vref=0.0 #Voltage in volt
#Calculations:
Vut=Vsat*R2/(R1+R2) #Calculating Vut voltage
Vut=Vut*1000.0 #Calculating Vut voltage
VL=-Vut #Calculating Vlt voltage
#Results:
print('Vut= %d mV'%Vut)
print('\nVL= %d mV'%VL)
#Variable Declaration:
Vclipl=0.35 #Voltage in volt
Vp=0.5 #Voltage in volt
gain=10.0 #Gain
R=1000.0 #Resistance in ohm
#Calculations:
Vounclip=Vp*gain #Calculating unclipped output voltage
Voclip=Vclipl*gain #Calculating clipped output voltage
Vb=Voclip-0.7 #Calculating breakdown voltage
#Results:
print('When unclipped, output voltage= %.1f V'%Vounclip)
print('\nWhen clipped, output voltage= %.1f V'% Voclip)
print('\nZener diode breakdown voltage= %.1f V'%Vb)
print('\nA 2.8V Zener diode should be connected')
#Variable Declaration:
Vref=1.5 #Voltage in volt
#Part A
#Variable declaration:
Vpp=5.0 #Voltage in volt
Vnp=2.5 #Voltage in volt
#Calculation:
Vc=Vnp + Vref #Calculating capacitor voltage
#Result:
print('\nCapacitor voltage Vc= %.1f V'%Vc)
#Part B
#Calculation:
Vopeak=Vnp + Vref +Vpp #Calculating peak clamped output voltage
#Result:
print('\nPeak value of clamped output voltage Vo(peak)= %.1f V'%Vopeak)
#Part C
#Calculation:
Voc=0.7 + Vref #Calating output voltage during charging
#Result:
print('\nOp-amp output voltage during charging Vo= %.1f V'% Voc)
#Part D
#Calculation:
Vd=Vref-Vopeak #Calculating maximum differenctial input voltage
#Result:
print('\nMaximum differential input voltage Vd= %.1f V'%Vd)