from math import atan, pi, sqrt, tan
d=30#
W=20*10**3#
r1=8#
r2=16#
p=6#
u1=0.2#
u2=0.15#
dm=d-(p/2)#
alpha=atan(p/(pi*dm))#
phi=atan(u1)#
rm=(r1+r2)/2#
Ttr=W*((dm*tan(alpha+phi)/2)+(u2*rm))#
Ttr=Ttr*10**-3#
print "Ttr is %0.3f Nm "%(Ttr)#
#The answer to Ttr is slightly different than in the book due to rounding-off of values.
from math import cos,pi,atan,tan
d=50#
W=20*10**3#
r1=10#
r2=30#
p=7#
u1=0.12/cos(15*pi/180)#
u2=0.15#
dm=d-(p/2)#
alpha=atan(3*p/(pi*dm))#
phi=atan(u1)#
rm=(r1+r2)/2#
Tr=W*((dm*tan(alpha+phi)/2)+(u2*rm))#
Tr=Tr*10**-3#
Te=W*((dm*tan(phi-alpha)/2)+(u2*rm))#
Te=Te*10**-3#
n=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm))#
L=0.30#
Ph=Tr/L#
print " Tr is %0.2f Nm "%(Tr)#
print "\n Te is %0.3f Nm "%(Te)#
print "\n n is %0.4f "%(n)#
print "\n Ph is %0.2f N "%(Ph)#
#The answers to Tr, Te and Ph is slightly different than in the book due to rounding-off of values.
from math import sqrt, pi, atan,tan
d=30#
W=5*10**3#
p=5#
rm=45/2#
u1=0.15/cos(14.5*pi/180)#
u2=0.15#
dm=d-(p/2)#
alpha=atan(p/(pi*dm))#
phi=atan(u1)#
Tr1=W*((dm*tan(alpha+phi)/2)+(u2*rm))#
Tr1=Tr1*10**-3#
n1=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm))#
T1=W*((dm*tan(phi-alpha)/2)+(u2*rm))#
T1=T1*10**-3#
n2=dm/2*tan(alpha)/(dm*tan(phi-alpha)/2+(u2*rm))#
u2=0.02#
Tr2=W*((dm*tan(alpha+phi)/2)+(u2*rm))#
Tr2=Tr2*10**-3#
n3=dm/2*tan(alpha)/(dm*tan(alpha+phi)/2+(u2*rm))#
Te=W*((dm*tan(phi-alpha)/2)+(u2*rm))#
Te=Te*10**-3#
n4=dm/2*tan(alpha)/(dm*tan(phi-alpha)/2+(u2*rm))#
print " Tr1 is %0.3f Nm "%(Tr1)#
print "\n n1 is %0.4f "%(n1)#
print "\n T1 is %0.3f Nm "%(T1)#
print "\n n2 is %0.4f "%(n2)#
print "\n Tr2 is %0.3f Nm "%(Tr2)#
print "\n n3 is %0.4f "%(n3)#
print "\n Te is %0.3f Nm "%(Te)#
print "\n n4 is %0.4f "%(n4)#
#The answer to T1 is misprinted in the book.
from math import tan,atan,pi
d=28#
P=300#
L=180#
p=8#
r1=16#
r2=46#
rm=(r1+r2)/2#
u1=0.12#
u2=0.15#
dm=d-(p/2)#
alpha=atan(p/(pi*dm))#
phi=atan(u1)#
T=P*L#
F=T/((dm*tan(alpha+phi)/2)+(u2*rm))#
F=F*10**-3#
print "F is %0.3f kN "%(F)#
from math import sqrt, pi, atan,tan
d=25#
p=8#
F=392.4#
L=250#
l=p*2#
u=0.14#
dm=d-(p/2)#
alpha=atan(l/(pi*dm))#
phi=atan(u)#
T=dm*tan(alpha+phi)/2#
M=F*L#
P=M/T*10**-3#
print "P is %0.1f kN "%(P)#
from math import sqrt, pi,atan,tan
d=52#
W=2.2*10**3#
p=8#
r1=15#
r2=30#
rm=(r1+r2)/2#
u1=0.15/cos(14.5*pi/180)#
dm=d-(p/2)#
alpha=atan(p/(pi*dm))#
phi=atan(u1)#
Ts=W*dm*tan(alpha+phi)/2#
u2=0.12#
Tc=u2*W*rm#
T=10**-3*(Ts+Tc)#
N=40#
w=2*pi*N/60#
P=T*w*10**-3#
To=W*dm/2*tan(alpha)#
n=To/(T*10**3)#
print "P is %0.2f KW "%(P)#
print "\nn is %0.4f "%(n)#
from math import sqrt, pi,atan,tan
alpha=atan(2*0.2/(pi*0.9))#
u1=0.15#
phi=atan(u1)#
P=200#
L=250#
Tt=P*L#
W=10*10**3#
u2=0.15#
x=Tt/W#
d=x/0.1716#
d=30#
p=6#
dr=0.8*d#
d=24#
p=5#
dr=d-p#
dm=d-(p/2)#
print "d is %0.0f mm "%(d)#
print "\np is %0.0f mm "%(p)#
from math import sqrt, pi,atan,tan
FOS=3#
sigut=380#
Ta=0.577*sigut/FOS#
d=25#
Tus=460#
Ps=pi*d*Tus#
siga=127#
dr=sqrt(Ps*4/(pi*siga))#
d=30#
p=6#
dr=d-p#
dm=d-(p/2)#
u1=0.15#
alpha=atan(p*2/(pi*dm))#
phi=atan(u1)#
T=Ps*dm*tan(alpha+phi)/2#
T1=16*T/(pi*dr**3)#
sigc=4*Ps/(pi*dr**2)#
sigmax=sigc/2+sqrt((sigc/2**2)+(T1**2))#
Tmax=sqrt((sigc/2**2)+(T1**2))#
n=tan(alpha)/tan(alpha+phi)#
Uo=Ps/2#
Ui=Uo/n#
wav=pi/2#
wmax=2*wav#
I=Ui*2/wmax**2#
k=0.4#
Ir=0.9*I*10**-3#
m=Ir/k**2#
R=0.4#
rho=7200#
a=sqrt(m/(2*pi*R*rho))#
T=T*10**-3#
print " T is %0.3f Nm "%(T)#
print "\n n is %0.4f "%(n)#
print "\n a is %0.5f mm "%(a)#
#The difference in the answers of T is due to rounding-off of values.