from math import pi, sqrt
d=10
l=1500
m=12
h=50
E=210*10**3
sigut=450
A=pi*d**2/4
W=m*9.81
sigi=W/A*(1+sqrt(1+(2*E*A*h)/(W*l)))
deli=sigi*l/E
siggradual=W/A
sigsudden=2*siggradual
print " sigi is %0.2f N/mm**2 "%(sigi)
print "\n deli is %0.2f mm "%(deli)
print "\n siggradual is %0.2f N/mm**2 "%(siggradual)
# The difference in the answer of sigi and siggradual is due to round-off errors.
from math import pi, sqrt
d=5
A=pi*d**2/4
l=100*10**3
W=600
E=210*10**3
w=0.0784*10**-3
del1=W*l/(A*E)
del2=w*l**2/(2*E)
Del=del1+del2
print "del is %0.2f mm "%(Del)
from math import pi, sqrt
m=25
v=3
E=210*10**3
KE=0.5*m*v**2
d=30
L=2000
A=pi*d**2/4
U=A*L/(2*E)
Del=4*10**-5*A
W=A*Del
sigi=sqrt(KE*10**3/(W+U))
print "del is %0.2f N/mm**2 "%(sigi)
P=40*10**3
A=60*18
sig=P/A
r1=12
b1=60
SCF1=1.7
sigmax1=sig*SCF1
r2=24
b2=60
SCF2=1.5
sigmax2=sig*SCF2
print "sigmax1 is %0.2f N/mm**2 "%(sigmax1)
print "\nsigmax2 is %0.2f N/mm**2 "%(sigmax2)
from math import pi, sqrt
p=2.4
#Let axial movement of nut be La
La=p*45/360
d=20
D=30
L=500
d1=18
As=pi*d1**2/4
Ac=pi*(D**2-d**2)/4
sigt=120/(3.543)
sigb=1.543*sigt
print "sigt is %0.2f N/mm**2 "%(sigt)
print "\nsigb is %0.2f N/mm**2 "%(sigb)
from __future__ import division
delT=100
ab=18*10**-6
aa=23*10**-6
delta=(360*ab*delT)+(450*aa*delT)
lc=delta-0.6
Ea=70*10**3
Eb=105*10**3
Aa=1600
Ab=1300
P=lc/((360/(Ab*Eb))+(450/(Aa*Ea)))
P=P*10**-3
#Let the change in length be delL
delL=(aa*450*delT)-(P*10**3*450/(Aa*Ea))
print " P is %0.2f kN "%(P)
print "\n delL is %0.2f mm "%(delL)
# The difference in the answer of delL is due to round-off errors.
a=23*10**-6
E=70*10**3
l=750
sig=35
delT=((sig*l/E)+0.8)/(l*a)
print "delT is %0.2f degC "%(delT)
OA=60
AB=30
OC=-20
CD=-30
theta=30
angBEK=2*theta
OM=14
KM=49.5
p1=70
p2=-30
angBEH=-37
angBEI=143
theta1=angBEH/2
theta2=angBEI/2
Tmax=50
angBEL=53
angBEN=233
theta3=angBEL/2
theta4=angBEN/2
print " Stress on plane AB is %0.2f MPa "%(OM)
print "\n Stress on plane AB is %0.2f MPa "%(KM)
print "\n Principal stress p1 is %0.2f MPa "%(p1)
print "\n Principal stress p2 is %0.2f MPa "%(p2)
print "\n Principal angle theta1 is %0.2f deg "%(theta1)
print "\n Principal angle theta2 is %0.2f deg "%(theta2)
print "\n Maximum shear stress is %0.2f MPa "%(Tmax)
print "\n Direction of plane theta3 is %0.2f deg "%(theta3)
print "\n Direction of plane theta4 is %0.2f deg "%(theta4)
#The answers in the book are written in form of degrees and minutes.
E=200*10**3
v=0.29
E1=720*10**-6
E2=560*10**-6
p1=121.76
p2=-76.69
print "p1 is %0.2f MN/mm**2 "%(p1)
print "\n p2 is %0.2f MN/mm**2 "%(p2)
from math import pi, sqrt
G=38*10**3
d=10
P=5*10**3
A=pi*d**2/4
sig=P/A
deld=0.0002
#Let the lateral strain be E1
E1=deld/d
v=2*deld*G/(sig-(2*deld*G))
E=2*G*(1+v)*10**-3
print "v is %0.4f "%(v)
print "\nE is %0.3f kN/mm**2 "%(E)
D=1500
p=1.2
sigt=100
sigc=p*D/2
siga=p*D/4
P=sigc*2*10**3
n=0.75
t=sigc/(n*sigt)
print "t is %0.1f mm "%(t)
D=50
t=1.25
d=0.5
n=1/d
p=1.5
siga=p*D/(4*t)
sigc=20.27
sigw=sigc/0.31416
print "sigw is %0.2f N/mm**2 "%(sigw)
from math import pi, sqrt
R1=50
p=75
pmax=125
R2=sqrt((pmax+p)*R1**2/(pmax-p))
t=R2-R1
print "t is %0.1f mm "%(t)
from math import pi, sqrt
R1=40
R2=60
B=50
E=210*10**3
e=41*10**-6
sig=2*R1**2/(R2**2-R1**2)
p=E*e/sig
Fr=p*2*pi*R1*B
u=0.2
Fa=u*Fr*10**-3
print "Fa is %0.2f kN "%(Fa)
a1=10*1.5
x1=15-0.75
a2=1.5*(15-1.5)
x2=(15-1.5)/2
y1=((a1*x1)+(a2*x2))/(a1+a2)
y2=a1-y1
Ixx=(10*1.5**3)/12+(10*1.5*(5.06-1.5/2)**2)+(1.5*13.5**3/12)+(1.5*13.5*(9.94-6.75)**2)
Z1=Ixx/y1
Z2=Ixx/y2
L=3
sigc=50
W=sigc*Z1/L*10**-3
print "W is %0.3f kN "%(W)
from math import pi, sqrt
D=22
d=20
r=1
K=2.2
sigmax=130
sigmax=sigmax/K
Z=pi*d**3/32
M=sigmax*Z*10**-3
print "M is %0.3f Nm "%(M)
from math import pi, sqrt
A=(12*2)+(12*2)+(30-4)
B=sqrt(A/2)
D=2*B
B1=12
D1=30
d=26
b=1
Z1=((B1*D1**3)-((B1-b)*d**3))/(B1*D1/2)
Zr=B*D**2/6
#Let the ratio of both the sections be x
x=Z1/Zr
M=30*10**6
sigmax=M/(Z1*10**3)
print "Z1/Zr is %0.2f "%(x)
print "\nsigmax is %0.2f N/mm**2 "%(sigmax)
from math import pi, sqrt
x1=((13*3*1.5)+(2*15*8))/(39+30)
x2=13-x1
A=30+39
E=2*10**7
Iyy=995.66
e=54.32
x=x2-3
sigb=e*x/Iyy
sigd=1/69
sigr=sigd+sigb
#Let the strain be E1
E1=800*10**-6
P=E1*E/sigr
P=P*10**-3
print "P is %0.2f kN "%(P)
from math import pi, sqrt
H=20
D=5
d=3
rho=21
sigd=rho*H
p=2
A=D*H
P=p*A
M=P*H/2
Z=pi*(D**4-d**4)/(32*D)
sigb=M/Z
sigmax=420+sigb
sigmin=420-sigb
print "sigmax is %0.2f kN/m**2 "%(sigmax)
print "\nsigmin is %0.2f kN/m**2 "%(sigmin)
from math import pi, sqrt
D=30
R=15
T=0.56*10**6
G=82*10**3
J=pi*R**4/2
T1=T*R/J
l=1000
theta=T*l/(G*J)*180/pi
r=10
Tr=T1*r/R
print " T1 is %0.2f N/mm**2 "%(T1)
print "\n theta is %0.2f deg "%(theta)
print "\n Tr is %0.2f N/mm**2 "%(Tr)
from math import pi, sqrt
T=8*10**3
d=80
D=110
l=2000
Gst=80*10**3
Gcop=Gst/2
Js=pi*d**4/32
Jc=pi*(D**4-d**4)/32
#Ts=0.777*Tc
Tc=T/1.777*10**3
Ts=0.777*Tc
Ts1=Ts/Js*d/2
Tc1=Tc/Jc*D/2
#Let tl be Angular twist per unit length
tl=Ts*10**3/(Js*Gst)*180/pi
# Let the maximum stress developed when the Torque is acting in the centre of the shaft be Ts2 & Tc2 resp. for steel and copper
Ts2=Ts1/2
Tc2=Tc1/2
print " Ts1 is %0.3f N/mm**2 "%(Ts1)
print "\n Tc1 is %0.1f N/mm**2 "%(Tc1)
print "\n theta/length is %0.3f deg/m "%(tl)
print "\n Ts2 is %0.3f N/mm**2 "%(Ts2)
print "\n Tc2 is %0.2f N/mm**2 "%(Tc2)
from math import pi, sqrt
D=100
d=75
r=6
K=1.45
P=20*746
N=400
w=2*pi*N/60
T=P/w
Ts=16*T*10**3/(pi*d**3)
Tmax=K*Ts
print "Tmax is %0.3f MPa "%(Tmax)
from math import pi, sqrt
G=84*10**3
T=28*10**3
l=1000
theta=pi/180
J=T*l/(G*theta)
d=(J*32/pi)**(1/4)
print "d is %0.1f mm "%(d)
from math import pi, sqrt
P=2*10**6
N=200
w=2*pi*N/60
Tm=P/w
W=5*10**3*9.81
l=1800
Mmax=W*l/4
Tmax=1.8*Tm*10**3
Me=(Mmax+sqrt(Mmax**2+Tmax**2))/2
Te=sqrt(Mmax**2+Tmax**2)
sig=60
Ts=40
d1=(32*Me/(pi*sig))**(1/3)
d2=(16*Te/(pi*Ts))**(1/3)
print "d is %0.1f mm "%(d2)
from math import pi, sqrt
Q=4*10**3
P=8*10**3
sig=P
T=Q
p1=(sig/2+sqrt((sig/2)**2+T**2))
p2=(sig/2-sqrt((sig/2)**2+T**2))
sigyp=285
FOS=3
siga=sigyp/3
A1=p1/siga
d1=sqrt(4*A1/pi)
A2=(p1-p2)*2/(siga*2)
d2=sqrt(4*A2/pi)
v=0.3
A3=sqrt(p1**2+p2**2-(2*v*p1*p2))/siga
d3=sqrt(4*A3/pi)
print " d1 is %0.2f mm "%(d1)
print "\n d2 is %0.1f mm "%(d2)
print "\n d3 is %0.2f mm "%(d3)
from math import pi, sqrt
sigx=-105
Txy=105
sigy=270
p1=(sigx/2+sqrt((sigx/2)**2+Txy**2))
p2=(sigx/2-sqrt((sigx/2)**2+Txy**2))
p3=0
Tmax=(p1-p2)/2
siga=sigy/2
if (Tmax<=siga) :
print "The component is safe"
print "\nTmax is %0.1f MPa "%(Tmax)
from math import pi, sqrt
rho=0.0078*9.81*10**-6
sigc=150
g=9.81
V=sqrt(sigc*g/rho)*10**-3
R=1
w=V/R
N=w*60/(2*pi)
print "N is %0.3f rpm "%(N)
from math import pi, sqrt
%matplotlib inline
from matplotlib.pyplot import plot, xlabel, ylabel, show, grid
R1=50
R2=200
N=6*10**3
w=2*pi*N/60
v=0.28
rho=7800*10**-9
g=9810
k1=(3+v)/8
k2=(1+(3*v))/8
W=rho*9.81
x=k1*w**2*W*(R1**2+R2**2)/g
y=k1*w**2*W*(R1*R2)**2/g
y1=k1*w**2*W/g
z=k2*w**2*W/g
r=sqrt(R1*R2)
sigrmax=x-(y/r**2)-(r**2*y1)
r=range(50,201)
n=len(r)
sigr = range(0,n)
for i in range(0,n):
sigr[i]=x-(y/r[i]**2)-(r[i]**2*y1)
sigc = range(0,n)
for j in range(0,n):
sigc[j]=y/r[j]**2-(r[j]**2*z)
plot(r,sigr)
plot (r,sigc)
xlabel('r in mm')
ylabel('stress in N/mm**2')
grid()
show()
print "sigrmax is %0.1f MPa "%(sigrmax)
from numpy import exp
r=500
to=15
N=3500
w=2*pi*N/60
sig=80
w1=0.07644*10**-3
g=9810
a=w1*w**2*r**2/(2*sig*g)
t=to*exp(-a)
print "t is %0.3f mm "%(t)
from numpy import log
M=60*10**3
y1=((5*1*2.5)+(6*1*5.5))/(5+6)
y2=6-y1
R=12
R1=R-y2
R1=10.136
R2=11.136
R3=R1+6
B=6
b=1
A=(B*b)+((B-1)*b)
#Let x= h**2/R**2
x=R/A*((B*log(R2/R1))+(b*log(R3/R2)))-1
x=1/x
#Let Maximum compressive stress at B be sigB
sigB=M/(A*R)*(1+(x*y1/(R+y1)))*10**-2
#Let Maximum tensile stress at A be sigA
sigA=M/(A*R)*((y2*x/(R-y2))-1)*10**-2
print "sigB is %0.1f MPa "%(sigB)
print "\nsigA is %0.0f MPa "%(sigA)
#The answer to R**2/h**2 is calculated incorrectly in the book.
from numpy import log
R1=24
R2=30
R3=50
R4=54
F=200
y1=((16*4*2)+(2*20*14*4)+(24*6*27))/((16*4)+(2*20*4)+(24*6))
y2=30-y1
R=24+y2
A=(24*6)+(2*4*20)+(4*16)
#Let x= h**2/R**2
x=R/A*((24*log(R2/R1))+(2*4*log(R3/R2))+(16*log(R4/R3)))-1
x=1/x
M=F*(60+R)
sigd=F/A
#Let bending stress at a be sigA
sigA=M/(A*R)*((y2*x/(R-y2))-1)
#Let bending stress at b be sigB
sigB=M/(A*R)*(1+(x*y1/(R+y1)))
#Let resultant at a be Ra
Ra=(sigA+sigd)*10
#Let resultant at b be Rb
Rb=(sigB-sigd)*10
print "Ra is %0.2f N/mm**2 "%(Ra)
print "\nRb is %0.2f N/mm**2 "%(Rb)
#The difference in the answers are due to rounding-off of values.
from __future__ import division
from numpy import log
F=50
B1=4
B2=8
D=12
y1=D/3*(B1+(2*B2))/(B1+B2)
y2=12-y1
R=6+y2
A=(B1+B2)/2*D
#Let x= h**2/R**2
a=(B1+((B2-B1)*(y1+R)/D))*log((R+y1)/(R-y2))
x=R/(A)*(a -(B2-B1))
x=x-1
x=1/x
KG=y2+8
M=F*KG
sigd=F/A
#Let bending stress at a be sigA
sigA=M/(A*R)*(1+(x*y1/(R+y1)))
#Let bending stress at b be sigB
sigB=M/(A*R)*((y2*x/(R-y2))-1)
sigA=(sigA-sigd)*10
sigB=(sigB+sigd)*10
print "sigA is %0.2f MPa "%(sigA)
print "\nsigB is %0.2f MPa "%(sigB)
#The difference in the answers are due to rounding-off of values.