d=5#
D=30#
G=84*(10**3)#
Na=15#
#Axial Load W
W=300#
#Spring index C
C=30/5#
#Shear stress Augmentation factor Ks
Ks=((2*C)+1)/(2*C)#
#Wahl's factor Kw
Kw=(((4*C)-1)/((4*C)-4))+(0.615/C)#
#Curvature correction factor Kc
Kc=Kw/Ks#
#Spring stiffness k
k=(G*(d**4))/(8*(D**3)*Na)#
#Axial deflection delta
delta=W/k#
print " Ks is %0.4f "%(Ks)#
print "\n Kw is %0.4f "%(Kw)#
print "\n Kc is %0.3f "%(Kc)#
print "\n The Spring Stiffness is %0.1f N/mm"%(k)#
print "\n The Axial deflection is %0.3f mm"%(delta)#
from math import pi
W=196.2#
lenthofscale=50#
k=196.2/50#
C=8#
Ks=(1+(0.5/C))#
# Let us choose oil tempered wire 0.6-0.7 %C. Refer to Table 8-4 for constants A and m, relating strength wire
#diameter.
G=77.2*(10**3)#
A=1855#
m=0.187#
# equating Tmax=0.5*sig(ut).
# Ks*(8*W*D/(pi*(d**3)))=0.5*A/(d**2)
d1=(Ks*(8*W*C/(pi*A*0.5)))#
d=d1**(1/1.813)#
D=C*d#
Na=G*(d**4)/(8*(D**3)*k)#
#Solid length = SL
SL=(Na-1)*d
print " wire diameter is %0.3f mm "%(d)#
print "\n mean diameter is %0.3f mm "%(D)#
print "\n Number of acting coils are %0.3f "%(Na)#
#The difference in the values of d,D and Na is due to rounding-off the digits.
from math import pi
d=1.626#
A=2211#
m=0.145#
rm=3#
ri=(rm-(d/2))#
sigma=A/(d**m)#
W=(sigma*pi*(d**3)*ri)/(32*(rm**2))#
print " Ultimate tensile Strength is %0.1f MPa "%(sigma)#
print "\n Force at which the spring hook fails is %0.1f N "%(W)#
#The difference in the values of sigma and W is due to rounding-off the digits.
from math import pi
Do=25#
# mean coil diameter D=25-d
W=150#
T=800#
G=81000#
# Substituting values in equation T=8*W*D/(pi*(d**3))
# therefore, the equation becomes d**3 + 0.477*d = 11.936
#consider d=2.2mm, (d can be taken between 2.2-2.3mm)
d=2.337# #(nearest available wire gauge)
C=9.5#
D=22.2#
Do=D+d#
Ks=1+(0.5/C)#
Tmax=Ks*8*W*D/(pi*(d**3))#
# check for safety- Tmax<T#
Lo=100#
Ls=40#
#Lo=Ls+delta+0.15*delta
delta=(Lo-Ls)/1.15#
delta=50#
k=150/50#
Na=(G*d**4)/(8*(D**3)*k)#
N=Na+2#
Ls=N*d#
Lo=Ls+(1.15*delta)#
print " d is %0.3fmm "%(d)#
print "\n D is %0.2f mm"%(D)#
print "\n Ls is %0.2f mm"%(Ls)#
print "\n Lo is %0.2f mm"%(Lo)#
if (Do<=25):
print '\nThe diameter is within space constraints'
from math import pi
Di=15#
Do=20#
d=2.3#
D=17.5#
C=D/d#
Ks=1+(0.5/C)#
Wmax=100#
Tmax=Ks*8*Wmax*D/(pi*(d**3))#
G=81000#
delmax=67.7/2.366#
k=100/28#
Na=G*(d**4)/(8*k*(D**3))#
Ls=Na+1# #(for plain ends)
delmax=28#
#TL= total working length
TL=Ls+delmax+(0.15*delmax)#
print " d is %0.1fmm "%(d)#
print "\n C is %0.1f "%(C)#
print "\n Na is %0.1f "%(Na)#
from math import pi
# 18 SWG=1.219MM in dia
d=1.219#
E=198.6*10**3#
G=80.7*10**3#
m=0.19#
A=1783#
sig=A/(d**m)#
Tys=(0.4*sig)#
Do=12.5#
D=Do-d#
C=D/d#
Ks=((2*C)+1)/(2*C)#
W=(Tys*pi*(d**3))/(8*D*Ks)#
Nt=13.5#
Na=Nt-2#
Del=(8*W*(D**3)*Na)/(G*(d**4))#
Ls=(Nt-1)*d#
Lo=Ls+Del+(0.15*Del)#
print " Tys is %0.1f MPa "%(Tys)#
print "\n W is %0.1f N "%(W)#
print "\n del is %0.3f mm "%(Del)#
print "\n Ls is %0.4f mm "%(Ls)#
print "\n Lo is %0.2f mm "%(Lo)#
#Answers in the book for Torsional yeild strength have been rounded-off to the nearest whole number.
from math import pi
d=1.016#
A=2211#
m=0.145#
G=81000#
Nt=16#
Na=16-2#
sig=A/(d**m)#
Tys=0.45*sig#
Do=12.6#
D=Do-d#
C=D/d#
Ks=1+(0.5/C)#
W=(Tys*pi*(d**3))/(8*D*Ks)#
k=(G*(d**4))/(8*(D**3)*Na)#
Del=W/k#
Ls=(Nt-1)*d#
Lo=Ls+(1.15*Del)#
print "Tys is %0.1f MPa "%(Tys)#
print "\n Do is %0.1f N "%(Do)#
print "\n W is %0.1f N "%(W)#
print "\n k is %0.3f N "%(k)#
print "\n del is %0.2f mm "%(Del)#
print "\n Ls is %0.2f mm "%(Ls)#
print "\n Lo is %0.3f mm "%(Lo)#
if ((Lo/D)>=5.26):
print 'The spring will fail under buckling'
#Values after the decimal point has not been considered for answer of Torsional yeild strength in the book, whereas answers for deflection and free-length is different as entire value of variables is taken for calculation in the code.
from math import pi
d=2#
Do=20#
D=Do-d#
C=D/d#
Na=9#
#Material hard drawn spring steel
A=1783#
m=0.19#
G=81000#
sig=A/(d**m)#
Tys=0.45*sig
Kf=1.5#
Ta=Tys/Kf#
Ks=1+(0.5/C)#
W=(Ta*pi*(d**3))/(8*D*Ks)#
k=(G*(d**4))/(8*(D**3)*Na)#
Del=W/k#
Lo=((Na+1)*d)+(1.15*Del)#
p=(Lo-d)/Na#
print "k is %0.3f N/mm "%(k)#
print "\n W is %0.1f N "%(W)#
print "\n Lo is %0.3f mm "%(Lo)#
print "\n p is %0.3f mm "%(p)
if ((Lo)>=47.34):
print 'The spring will fail under buckling'
#The answer for value of spring rate 'k' is misprinted in the book. Due to this all subsequent values of del,Lo,p is calucated incorrectly in the book.
from math import pi
# for music wire
d1=11.5#
A=2211#
d=1.5#
m=0.145#
sigut=A/(d**m)#
sigy=0.78*sigut#
Do=16#
E=2*(10**5)#
Nb=4.25#
D=Do-d#
C=D/d#
Ki=((4*(C**2))-C-1)/(4*C*(C-1))#
Mmax=(sigy*pi*(d**3))/(32*Ki)#
kc=((d**4)*E)/(10.8*D*Nb)#
theta3=Mmax/kc#
l1=20#
l2=20#
Ne=(l1+l2)/(3*pi*D)#
Na=Nb+Ne#
k=((d**4)*E)/(10.8*Na*D)#
thetat=Mmax/k#
ke=(3*pi*(d**4)*E)/(10.8*(l1+l2))#
# angdisp=theta1+theta2=Mmax/ke#
angdisp=Mmax/ke#
#D1 is final coil diameter
D1=(Nb*D)/(Nb+theta3)#
#IRC=Initial radial clearance
IRC=((D-d)-d1)/2#
#FRC=Final radial clearance
FRC=((D1-d)-d1)/2#
print " Maximum Torque is %0.2f Nmm "%(Mmax)#
print "\n theta3 is %0.3f turns "%(theta3)#
print "\n Ne is %0.3f turns "%(Ne)#
print "\n ke is %0.1f N/mm "%(ke)#
print "\n theta1+theta2 is %0.4f turns "%(angdisp)#
print "\n D1 is %0.2f mm "%(D1)#
print "\n IRC is %0.2f mm "%(IRC)#
print "\n FRC is %0.2f mm "%(FRC)#
from math import pi
A=1783#
m=0.190#
d=1.5#
D=15#
M=300#
E=20800#
k=30#
#sigult= ultimate strength of the material
# sigy= yield strength of the material
sigult=A/(d**m)#
sigy=0.7*sigult#
#siga= allowable yield strength of the material
siga=sigy/2#
C=D/d#
Ki=(4*(C**2)-C-1)/(4*C*(C-1))#
Z=pi*(d**3)/32#
#sigb=bending strength of the material#
sigb=Ki*M/Z#
while (sigb>=siga) :
d=d+0.15#
D=15#
C=D/d#
sigult=A/(d**m)#
sigy=0.7*sigult#
siga=sigy/2#
Ki=(4*(C**2)-C-1)/(4*C*(C-1))#
Z=pi*(d**3)/32#
sigb=Ki*M/Z#
d=2## rounding off the value of the diameter.
Na=(d**4)*E/(64*D*k)#
print " d is %0.1f mm "%(d)#
print "\n D is %0.1f mm "%(D)#
print "\n Na is %0.2f mm "%(Na)#
from math import pi
L=1180#
W=40*(10**3)#
Nf=2#
Ng=8#
E=207*(10**3)#
#sigut is ultimate strength
sigut=1400#
FOS=2#
#siga= allowable yield strength of the material
siga=1400/2#
#sigbf=bending strength in full length
sigbf=700#
b=75#
t=((4.5*W*L)/(((3*Nf)+(2*Ng))*sigbf))**(0.5)#
t=14#
I=(Nf*b*(t**3))/12#
Wf=(3*Nf*W)/((3*Nf)+(2*Ng))#
Del=(Wf*(L**3))/(48*E*I)#
print " t is %0.0f mm "%(t)#
print "\n Wf is %0.0f N "%(Wf)#
print "\n I is %0.0f mm**4 "%(I)#
print "\n del is %0.1f mm "%(Del)#
W=80000#
sigbfr=500#
L=1100#
Nf=3#
Ng=10#
N=Nf+Ng#
t=((1.5*W*L)/(N*6*sigbfr))**(1/3)#
t=15#
b=6*t#
E=207*10**3#
deli=(W*(L**3))/(8*E*N*b*(t**3))#
Wi=(W*Nf*Ng)/(N*((3*Nf)+(2*Ng)))#
print " t is %0.1f mm "%(t)#
print "\n deli is %0.1f mm "%(deli)#
print "\n Wi is %0.0f N "%(Wi)#
from math import pi
#ultimate strength=sigut
sigut=1500#
C=7#
d=3#
D=C*d#
Ks=1+(0.5/C)#
Kw=(((4*C)-1)/((4*C)-4))+(0.615/C)#
Pmax=120#
Pmin=40#
Pm=80#
Tm=(Ks*8*Pm*D)/(pi*(d**3))#
Ta=(Kw*8*Pmin*D)/(pi*(d**3))#
Tse=0.22*sigut#
Tys=0.45*sigut#
x=(Tys-(0.5*Tse))/(0.5*Tse)#
y=((x)*Ta)+Tm#
FOS=(Tys/y)#
print " Tm is %0.2f MPa "%(Tm)#
print "\n Ta is %0.1f MPa "%(Ta)#
print "\n FOS is %0.3f "%(FOS)#
from math import pi
Tse=360#
Tys=660#
d=25#
P=0.03#
m=40#
Pmin=((pi*(d**2)*P)/4)+(m*9.81/1000)#
k=6#
#Additional load= Padd=k*further compression in spring
Padd=k*10#
Pmax=Padd+Pmin#
Pm=(Pmax+Pmin)/2#
Pa=(Pmax-Pmin)/2#
d=2#
D=12#
C=6#
Ks=1+(0.5/C)#
Ks=1.083#
Kw=(((4*C)-1)/((4*C)-4))+(0.615/C)#
Ta=(Kw*8*Pa*D)/(pi*(d**3))#
Tm=(Ks*8*Pm*D)/(pi*(d**3))#
x=(Tys-(0.5*Tse))/(0.5*Tse)#
y=((x)*Ta)+Tm#
FOS=(Tys/y)#
print " Tm is %0.2f MPa "%(Tm)#
print "\n Ta is %0.3f MPa "%(Ta)#
print "\n FOS is %0.2f "%(FOS)#